[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] serie interessante
Sauda,c~oes,
O professor Rousseau acabou de me mandar
o seguinte email:
Dear Luis:
Thanks. I am just writing up a solution set for one of
my classes that includes a most remarkable sum.
Unfortunately, I don't know even an Eulerian approach to
this problem; only complex analysis works as far as
I know. Anyway, here is the series
\sum_{k=1}^{\infty} 1/x_k^2 = 1/10,
where 0 < x_1 < x_2 < x_3 < \cdots are the positive
roots of the equation x = \tan x. What's so remarkable
about this series is that we don't have a precise value for
any one of the terms (although they can be approximated
to many decimal places by numerical computation), but
we do have a precise value (1/10) for the sum.
Something to ponder.
Cecil
Comentário: não sei se os x_k e os 1/x_k^2 são
transcendentes mas se forem, teríamos uma soma
infinita de termos transcendentes dando um número
racional.
[]'s
Luís
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================