[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[SPAM] Re: [obm-l] Re: [obm-l] Problema com polinômios



SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam.  The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM: 
SPAM: Content analysis details:   (5.10 hits, 5 required)
SPAM: IN_REP_TO          (-0.8 points) Found a In-Reply-To header
SPAM: REFERENCES         (-0.5 points) Has a valid-looking References header
SPAM: X_MAILING_LIST     (-0.3 points) Found a X-Mailing-List header
SPAM: SPAM_PHRASE_00_01  (0.8 points)  BODY: Spam phrases score is 00 to 01 (low)
SPAM: RCVD_IN_ORBS       (2.2 points)  RBL: Received via a relay in orbs.dorkslayers.com
SPAM:                    [RBL check: found 231.82.249.66.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points)  RBL: Received via a relay in relays.osirusoft.com
SPAM:                    [RBL check: found 231.82.249.66.relays.osirusoft.com.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points)  RBL: DNSBL: sender is Confirmed Open Relay
SPAM: AWL                (0.6 points)  AWL: Auto-whitelist adjustment
SPAM: 
SPAM: -------------------- End of SpamAssassin results ---------------------

Essa lista é mesmo fantastica! Obrigado a todos mesmo!

Com relação ao problema proposto pelo prof. Shine:

>
> Note que se fossem 3 inteiros a,b,c no lugar de
> a,b,c,d, seria possível construir P(x). De fato,
> fazendo as mesmas contas (sem o d, claro) obtemos
>  3 = Q(k) = (k-a)(k-b)(k-c)R(x)
> e podemos tomar k-a = -3, k-b = -1 e k-c = 1. Tomando
> k=0, temos a = 3, b = 1 e c = -1. Tomando ainda R(x) =
> 1, obtemos
>  Q(x) = (x-3)(x-1)(x+1) = x^3 - 3x^2 - x + 3
> ou, mudando para P(x),
>  P(x) = Q(x) + 5 = x^3 - 3x^2 - x + 8.
>
> Temos P(3) = P(1) = P(-1) = 5 (verifique!) e P(0) = 8.
>
> Você conseguiria encontrar *todos* os polinômios P(x)
> desse novo problema?
>
> []'s
> Shine
>

Se eu entendi bem, o problema seria encontrar todos os polinômios P(x)
onde existem inteiros distintos a, b e c tal que P(a) = P(b) = P(c) =
5?

Poderia supor a existencia de inteiros k, t tal que P(k) = t. (I)

Usando a mesma idéia do problema anterior: Seja Q(x) = P(x) - 5, onde
a, b e c são raizes de Q(x). Portanto Q(x) = (x-a)(x-b)(x-c)R(x), e de
(I) teriamos:

Q(k) = P(k) - 5 = t - 5 = (k-a)(k-b)(k-c)R(x)

Agora eu engasguei... Pensei em usar tau(t-5), onde poderia obter o
numero de divisores (positivos), não sei se ajudaria em algo...

(Desculpem se estou dizendo asneiras)

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================