[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] IME
Olá a todos,
Começaram hoje as provas do IME. Hoje foi realizada a prova de matemática.
Lembro que ano passado propuseram na lista resoluções das questões
diferentes da resoluções dadas pelos cursinhos. Esse ano vão fazer também?
O Poliedro (www.sistemapoliedro.com.br) está resolvendo. O GPI diz que irá
resolver também (www.gpi.g12.br). O Poliedro está colocando o enunciado em
apenas algumas das questões.
Mas já começo com um pedido, a questão 3. Vou passar direto aqui.
Sejam a, b, c, d números reais positivos e diferentes de 1. Sabendo que
log[a](d), log[b](d) e log[c](d) são termos consecutivos de um progressão
aritmética, demonstre que:
c^2 = (ac)^log[a](d)
log[a](d) é log de d na base a
Só que ninguém que conversei conseguiu chegar nisso. Apenas em:
c^2 = (ac)^log[a](b)
Cheguei nisso, e não vejo motivo para b = d
De resto tiveram questões MUITO simples, outras malvadas e outras realmente
difíceis.
A questão 4 por exemplo dava duas equações de quarto grau, pedia as raizes
comuns. Porém não tinha raízes comuns! Cruel pra quem tá ali fazendo a prova
.
[]s
Ariel
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================