[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Problemas afinal!!!! =)



oi cara, acho que vc quis dizer Recursão ao invés de repercursão =)
abraços
Marcelo


>From: René Retz <rene.retz@bol.com.br>
>Reply-To: obm-l@mat.puc-rio.br
>To: <obm-l@mat.puc-rio.br>
>Subject: Re: [obm-l] Problemas afinal!!!! =)
>Date: Mon, 11 Feb 2002 00:16:06 -0300
>
>Ae pessoal, acho que eu acabei complicando um pouco, mas para efeito de
>conhecimento eu resolvi por repercursao ( acho que é isso )
>desculpem-me qualquer erro.....
>
> > 1. Dada a sequencia infinita de inteiros a_1,a_2,..., definida por
> > a_1 = 1, a_2=0,a_3=-5 e a_n=4[a_(n-1)]-5[a_(n-2)]+2[a_(n-3)]   n>=3
> > ache uma expressão fechada para a_n.
>
>a_n=4[a_(n-1)]-5[a_(n-2)]+2[a_(n-3)]
>a_n - a_(n-1) = 3[a_(n-1)] - 3[a_(n-2)] - 2[a_(n-2)] + 2[a_(n-3)]
>fazendo {b_n} a diferença de primeira ordem de {a_n},   (   Ex. a_n -
>a_(n-1)   ) temos:
>b_n = 3[b_(n-1)] - 2[b_(n-3)]
>b_n - b_(n-1) = 2[b_(n-1)] - 2[b_(n-3)]
>fazendo {c_n} a diferença de segunda ordem de {a_n},   (   Ex. b_n -
>-1)   ) temos:
>c_n = 2[c_(n-1)]
>concluimos:    c_n = c_1 *2^(n-1)
>
>temos que c_1 = b_2 - b_1 = (a_3 - a_2) - (a_2 - a_1) = -4
>assim: c_n = -2^2 . 2^(n-1) = -2^(n+1)
>
>logo: b_n = b_1 + S(n-1) c_n
>         b_n = (-1) + S(n-1) [-2^(n+1)] = (-1) - [2^2(2^(n-1) - 1)] / [2 
>-1]
>(P.G.)
>         b_n = - 2^(n+1) + 3 ---> o que também é valido para b_1 e b_2
>
>logo: a_n = a_1 + S(n-1) b_n
>         a_n = (1) + S(n+1) [- 2^(n+1) + 3] = (1) - [2^2(2^(n-1) - 1)] /
>[2 -1] + 3(n-1)         (P.G.)
>         a_n = -2^(n+1) + 3n +2 ----> o que também é valido para a_1, a_2 e
>a_3
>
>sendo assim a resposta:   a_n = -2^(n+1) + 3n +2
>
>
>=========================================================================
>Instruções para entrar na lista, sair da lista e usar a lista em
>http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
>O administrador desta lista é <nicolau@mat.puc-rio.br>
>=========================================================================


_________________________________________________________________
Send and receive Hotmail on your mobile device: http://mobile.msn.com

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================