Primeiramente obrigado à Alane e ao Ralph pelas sugestões. Vamos por partes:
A Alane lembrou que se z é uma raiz do polinômio, então o conjugado complexo de z também será raiz. Não tenho certeza absoluta, mas acho que este princípio se mantém para funções polinomiais de C em C.
O Ralph fez uma análise como se o polinômio fosse função de R em R, que não é o caso. Mas me deu algumas idéias sobre como atacar o problema. Até agora estou apenas no nível qualitativo. Depois vou tentar resolver a álgebra (a menos que alguém me mostre que esta linha de raciocínio não tem futuro :-)). O que estou pensando é:
1) Se k=0, P(x) tem três raízes reais em x=-1, x=-3 e x=-5.
2) Deve existir uma faixa de valores 0<k<=k1 para a qual P(x) ainda apresenta três raízes reais, que vão "excursionar" em algum trecho do semi-eixo real negativo. A investigar: (a) Qual o valor de k1? (estudo de máximos/mínimos/inflexões via P'(x)=0 deve ajudar nisso); (b) qual(is) intervalo(s) do semi-eixo real negativo é(são) percorrido(s) pelas raízes?
3) Se k>k1 então deve continuar a existir uma raiz real (que também "excursiona" no semi-eixo real negativo) e um par de raízes complexas conjugadas. Sobre a raiz real a pergunta é: qual o seu intervalo de excursão? Sobre as raízes complexas o raciocínio é mais longo...
4) Temos que P(x)=x^3+(k+9)x^2+(6k+23)x+(8k+15). Se z=r.e^(i.a) é raiz de P(x), então r^3.e^(i.3a)+(k+9)r^2.e^(i.2a)+(6k+23)r.e^(i.a)+(8k+15)=0. Então temos quatro componentes, com argumentos complexos 0 (número real), a, 2a e 3a. De cara enxergo como "candidatos" a raiz os números complexos na forma z=r.e^(i.pi/2), onde o valor de r depende de k. Desta forma, o componente de argumento complexo 2a=2.pi/2=pi pode anular o componente de argumento complexo 0, e o componente de argumento complexo 3a=3.pi/2 pode anular o componente de argumento complexo a=pi/2. Se isto realmente for possível (tenho que verificar a álgebra), então z excursiona em um intervalo do semi-eixo imaginário positivo, com este intervalo limitado em (pelo menos) um valor que é função de k1, e o seu conjugado complexo vai ter um comportamento "espelhado" no semi-eixo imaginário negativo.
Então minha primeira visão (qualitativa) para o lugar geométrico procurado é: um conunto de intervalos (possivelmente contínuos ou parcialmente sobrepostos) no semi-eixo real negativo, um intervalo (talvez finito) no semi-eixo imaginário positivo e o seu "espelho" no semi-eixo imaginário negativo.
Críticas? Sugestões?
[ ]'s
Esta questão foi da prova de álgebra do IME 1976/1977. Vou transliterar um pouco o enunciado.
Seja P(x)=(x+1)(x+3)(x+5)+k(x+2)(x+4), com x complexo e k real positivo. Desenhar no plano complexo o lugar geométrico das raízes de P(x)=0 para todos os valores possíveis de k.
Tentei o seguinte: se z=a+bi é raiz de P(x), então P(z)=0, o que implica que Re[P(z)]=0 e Im[P(z)]=0, então daria para obter expressões em função de a e b que descrevessem o lugar geométrico procurado. Só que as expressões parecem intratáveis.
J. R. Smolka