| 
 Olá, 
z = cis(r) = cos(r) + isen(r) 
z^n = cis(nr) = cos(nr) + isen(nr) 
Sum(cis(kr)) = Sum(z^k) , k = 1 ... n 
Sum(z^k) = z + z^2 + z^3 + ... + z^n = z(z^n - 1) / 
(z - 1) [somatorio de PG] 
Sum(z^k) = cis(r) [ cis(nr) - 1 ] / [ cis(r) - 1 
] 
Sum(cis(kr)) = cis(r) [ cis(nr) - 1 ] / [ cis(r) - 
1 ] = cis(r) [ cis(nr) - 1 ] * [ cis(-r) - 1 ] / [ 1 - cis(-r) - cis(r) + 1 
] 
cis(r) + cis(-r) = cos(r) + isen(r) + cos(r) - 
isen(r) = 2cos(r) 
Sum(cis(kr)) = [ cis(r)cis(nr)cis(-r) - 
cis(r)cis(-r) - cis(r)cis(nr) + cis(r) ] / [ 2 + 2cos(r) ] 
Re(Sum(cis(kr))) = Sum(cos(kr)) 
Im(Sum(cis(kr))) = Sum(sen(kr)) 
Sum(cis(kr)) = [ cis(nr) - 1 - cis[(n+1)r] + cis(r) 
] / 2[1 + cos(r)] 
Re(Sum(cis(kr))) = [ cos(nr) - 1 + cos[(n+1)r] + 
cos(r) ] / 2[1+cos(r)] 
Im(Sum(cis(kr))) = [ sen(nr) - 1 - sen[(n+1)r] + 
sen(r) ] / 2[1+cos(r)] 
Sum(cos(kr)) = [ cos(nr) - 1 + cos[(n+1)r] + 
cos(r) ] / 2[1+cos(r)] 
Sum(sen(kr)) = [ sen(nr) - 1 - sen[(n+1)r] + 
sen(r) ] / 2[1+cos(r)] 
Sum(sen(a+kr)) = Sum(sen(a)cos(kr) + cos(a)sen(kr)) 
= sen(a)*Sum[cos(kr)] + cos(a)*Sum[sen(kr)] 
Sum(cos(a+kr)) = Sum(cos(a)cos(kr) - sen(a)sen(kr)) 
= cos(a)*Sum[cos(kr)] - sen(a)*Sum[sen(kr)] 
abraços, 
Salhab 
  |