[AM] Adler, M., Van Moerbeke, P., Completely integrable systems, Euclidean Lie algebras and curves, Adv. in Math. 38 (1980), 267-317.
[DNT] Deift,P., Li, L.C., Tomei, C., Symplectic aspects of some eigenvalue algorithms, em Important Developments in Soliton Theory, eds. A. Fokas e V. Zakharov, Springer-Verlag, 1993, 511-536.
[DLT1] Deift, P., Li, L.C., Tomei, C., Matrix factorizations and integrable systems, Comm. Pure Appl. Math. 49 (1989), 443-521.
[DLT2] Deift,P., Li, L.C., Tomei, C., Loop groups, discrete versions of some classical integrable systems and rank 2 extensions, Memoirs of the AMS 479 (1992).
[F] Flaschka, H., The Toda Lattice I, Phys. Rev. B 9 (1974), 1924-1925.
[KM] Kac., M., Van Moerbeke, P., A complete solution of the periodic Toda problem, Proc. nat. Acad. Sci. USA, 72, 8 (1975), 2879-2880.
[L] Lax, P., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467-490.
[M] Moser, J., Finitely many mass points on the line under the influence of an exponential potential -- an integrable system, Dynamic Systems Theory and Applications (ed. J. Moser), Lecture Notes in Physics 38 (1975), 467-497.
[PS] Pressley, A., Segal, G., Loop Groups, Oxford University Press (1986), Oxford.
[S] Symes, W., Hamiltonian group actions and integrable systems, Physica 1D (1980),339-374.
[T] Toda, M., Wave propagation in anharmonic lattices, J. Phys. Soc. Japan, 23 (1967), 501-506.
[To] Tomei, C., Fluxos de Matrizes, 15o Colóquio Brasileiro de Matemática.