[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] Errata
Desculpem, digitei errado. Vai a correcao:
queremos um numero de 4
algarismos, QUADRADO PERFEITO, todos menores que 6, e ao acrescentarmos 1 a
todos os
seus algarismos, obtemos outro quadrado perfeito. Achei 45^2 = 2025,
e acrescentando 1 a todos os algarismos vem 3136 = 56^2.
>From: "Antonio Neto" <osneto@hotmail.com>
>Reply-To: obm-l@mat.puc-rio.br
>To: obm-l@mat.puc-rio.br
>Subject: [obm-l] Cone Sul 88
>Date: Fri, 13 Jul 2007 23:11:30 +0000
>
>
> Ola, amigos da lista, andei meio doente e sumido, mas sobrevivi.
>Enquanto estava de cama, andei vendo umas olimpiadas antigas, para me
>distrair e achei o seguinte problema: queremos um numero de 4 algarismos,
>todos menores que 6, e ao acrescentarmos 1 a todos os seus algarismos,
>obtemos outro quadrado perfeito. Achei 45^2 = 2025, e acrescentando 1 a
>todos os algarismos vem 3136 = 56^2. Mas achei a minha solucao muito
>bracal, alguem teria algo melhor, alguma propriedade de teoria dos números
>que eu nao saiba, ou nao lembrei? Abracos, olavo.
>
>_________________________________________________________________
>MSN Messenger: instale grátis e converse com seus amigos.
>http://messenger.msn.com.br
>
>=========================================================================
>Instruções para entrar na lista, sair da lista e usar a lista em
>http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
>=========================================================================
_________________________________________________________________
MSN Messenger: instale grátis e converse com seus amigos.
http://messenger.msn.com.br
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================