[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] dúvida sobre Limite
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] dúvida sobre Limite
- From: "Marcelo Salhab Brogliato" <msbrogli@xxxxxxxxx>
- Date: Thu, 28 Jun 2007 11:26:29 -0300
- DKIM-Signature: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=m/vqYHY+wZ9X74gHMM4D4q6Nj3cDNrhGKF6vAbF/h2anskbfkeehDuMedwwpNA+HA65beZOmaV2gUFOf9utPKydVdPHgDxpNMYarPz8fMVLu4aNe1r34hJb+lTukhVqN0nrDnBdSGaJ3SIxPwN12nenwzNMXP2yA41fK8SZmJhk=
- DomainKey-Signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references; b=IZeeHcgCJouLMXOXxClLNOTaGPnF2ck0doyZ+iBasnTyolLpx+4eje6YkemAS3OiCOvlIl5movmqs3dTB+KsGCIhUcawmp4M15ZH7entn8Pikbr4V/7hLSTSWV0DQyZZw1KRMkJN0gVmY4wJptQedJzdueG61/s7BIIh2V8uF8M=
- In-Reply-To: <39794f250706280641m22d97819pfffae53cf54c8b0@mail.gmail.com>
- References: <39794f250706280641m22d97819pfffae53cf54c8b0@mail.gmail.com>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
Olá,
um possivel jeito é: f(x) = e^x ... f'(x) = e^x ... opa.. f'(0)
existe.. logo, f é continua no ponto 0.. deste modo: lim[x->0] f(x) =
f(0), portanto: lim [x->0] e^x = 1
outro modo seria:
-delta < x < delta.... e^(-delta) < e^x < e^(delta) ... e^(-delta) -
1 < e^x - 1 < e^(delta) - 1
assim, se eps = max{e^(delta)-1 ; e^(-delta)-1}, temos que: |e^x - 1| < eps
logo: para todo eps > 0, existe um delta>0, tal que |x| < delta
implica que |e^x - 1| < eps
abracos,
Salhab
On 6/28/07, Kleber Bastos <kleber09@gmail.com> wrote:
> Como eu faço para provar a seguinte afirmativa :
> lim e^(x) = 1 , quando x tende para zero .
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================