[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Inducao



Ola Ronaldo e demais
colegas desta lista ... OBM-L,

Ja, ich spreche Deutsch vernünftig. Ich las, und ich schreibe mit mehr
Leichtigkeit.
Es ist wunderbarer gelesener Goeth und Gauss in ihren originalen Sprachen !.
> Paulo sprachest du deutch? Das ist gut !

Ou prova que ha no universo sincronicidades que ainda nao conhecemos ?
Eu nao acredito em coincidencias e me parece que a critica do Hamlet (
Lasen Sie Shakespeare schon ? ) ao Aristotelismo decadente da
Escolastica continua atual :

"Entre o ceu e a terra ha muito mais coisas do que supoe a nossa vao filosofia"

Anote ai : este problema esta para o nosso tempo assim como a deducao
matematica da orbita eliptica dos planetas estava para o tempo do
Newton ... De fato. Uma proteina e um objeto que e impossivel de ser
compreendido e corretamente avaliado se voce nao considera com igual
apreco tanto a sua constituicao fisica quanto o papel que ela
desempenhano organismo ou todo. Aqui, o local e o global se fundem de
maneira misteriosa e emocionante. Num primeiro momento, eu penso que
sera a prova de fogo da algebra homologica e/ou de algum de seus
desenvolvimentos.

Existem muitos fenomenos que sao claramente a passagem de uma
estrutura estavel a outra sem que ocorra qualquer catastrofe. Pelo
contrario, inclusive com diminuicao da entropia. Em particular no
reino vivo, isto e bem claro. Talvez a proteina seja o objeto mais
simples onde isto ocorre e a real compreensao de sua sintese pode ser
o pontape inicial para a compreensao de outros fenomenos mais
complicados.

Fique tranquilo. Nao tenha pressa. Escreve sem preocupacao com
correcao matematica.. Deixe-se leva pela sua intuicao ...

Um Abracao
Paulo Santa Rita
6,2220,190107

2007/1/19, Ronaldo Alonso <ronaldo.luiz.alonso@gmail.com>:
> Paulo sprachest du deutch? Das ist gut!
>
>      Tenho uma história interessante para contar:  Aquele dia que vim para o
> Rio e fui
> conhecer o IMPA eu conheci um professor chamado Yuan Jin Yun que dá aulas na
> universidade
> federal do paraná e no momento ele estava particiando de uma reunião sobre
> olimpíadas de
> matemática.
>    Dias depois fui a um encontro do pessoal da USP na casa de meu orientador
> e adivinha que eu encontrei lá!   O professor Yuan estava visitando a USP de
> São Carlos também.
>     Isso é uma prova de que o mundo é realmente pequeno :)
>     Estou terminando de escrever aquele documento que eu havia lhe prometido
> este final
> de semana.  Segunda feira pode checar seu e-mail que vai estar lá (promessa
> é divida) !
>
> []s
>
> Ronaldo L. Alonso.
>
>
>    Estou devendo ainda para você a descrição que tinha prometido.Este final
> de semana
> vou terminar de escrever e envio para você por e-mail.
>
>
>
> On 1/19/07, Paulo Santa Rita <paulosantarita@hotmail.com> wrote:
> >
> > "Jemand sagte schon, daß eine Dosis des Wahnsinnes hinter jeder glänzenden
> Idee dort ist ..."
> >
> > Ola Giuliano e demais
> > colegas desta lista ... OBM-L,
> >
> > Nao entendi a sua prova. Voce pode explicar melhor ?
> >
> > Um Abraco
> > Paulo Santa Rita
> > 6,1421,190107
> >
> > ----------------------------------------
> > > Date: Thu, 18 Jan 2007 17:03:48 -0200
> > > Subject: Re:[obm-l] Inducao
> > > From: giuliano.giacaglia@uol.com.br
> > > To: obm-l@mat.puc-rio.br
> > >
> > > Tenho uma solução alternativa para a questão 3).
> > > Eleve ao quadrado ambos os lados então chegamos a equivalência de provar
> que [1^2*3^2*....*(2n-1)^2]*(2n+1)<=2^2*4^2*....*(2n)^2
> > > Temos que (2n-1)(2n+1)<(2n)^2 <=> -1<0 Ok!!!
> > > Logo chegamos o que foi pedido diretamente. C.Q.D.
> > > Abraços,
> > > Giuliano Pezzolo Giacaglia
> > > (Stuart)
> > >
> > > > 1)Prove que todo inteiro positivo pode ser escrito como potencias de 2
> com expoentes distintos
> > > > 2)Prove que um quadrado pode ser dividido em n quadrados para n>=6.
> > > > 3)Prove que [1.3.5..(2n-1)]/[2.4.6.8...2n]=<1/sqrt(2n+1)
> > > >
> > > > Grato.
> > > >
> > > > __________________________________________________
> > > > Fale com seus amigos  de graça com o novo Yahoo! Messenger
> > > > http://br.messenger.yahoo.com/
> > >
> > >
> > >
> > >
> > >
> =========================================================================
> > > Instruções para entrar na lista, sair da lista e usar a lista em
> > > http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> > >
> =========================================================================
> >
> >
> _________________________________________________________________
> > Busque em qualquer página da Web com alta proteção. Obtenha o Windows Live
> Toolbar GRATUITO ainda hoje!
> > http://toolbar.live.com/
> >
> =========================================================================
> > Instruções para entrar na lista, sair da lista e usar a lista em
> > http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> >
> =========================================================================
> >
>
>
>
> --
> Ronaldo Luiz Alonso
> --------------------------------------
> Computer Engeener
>  LSI-TEC/USP - Brazil.

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================