[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] o chapeu de Rudin.
Só por curiosidade, o do livro do Elon (q = p + (2 - p^2)/(2p + 1)) é
mais fácil de se explicar:
Queremos que, para 2 - p^2 > 0, tenhamos 2 - (p+a)^2 > 0. Isto implica
em 2 - p^2 - 2ap - a^2 > 0. Mas, considerando 0 < a < 1, temos que 2 -
p^2 - 2ap - a^2 > 2 - p^2 - 2ap - a, e, daí, basta tomar um racional a
que satisfaça a inequação 2 - p^2 - 2ap - a > 0, que é equivalente a 0
< a < (2-p^2)/(2p + 1).
--
Abraços,
Maurício
On 12/6/06, niski lista <niskilista@gmail.com> wrote:
> O Rudin, no começo do livro "Principles of Mathematical Analysis" (3rd edition)
> define A como sendo o conjunto dos racionais positivos p tais que p^2 < 2.
> Depois ele diz que para cada p em A, ele consegue achar um racional q
> tal que p < q.
> Para isso ele diz que pode associar, para cada racional p > 0 o numero
>
> q = p - ((p^2 - 2)/(p + 2)) = (2p + 2)/(p+2)
>
> Isso me pareceu meio que tirado do chapeu. Uma explicacao mixuruca
> seria: "q foi tomado dessa forma pois é o que funciona".
>
> Alguem tem alguma idéia de como o Rudin pode ter pensado pra apresentar esse q ?
>
> Um abraço a todos.
>
> Niski
>
> =========================================================================
> Instruções para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> =========================================================================
>
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================