[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Prove that 22/7 > pi.



Tem uma outra muito boa pi = 355/113.
----- Original Message -----
Sent: Tuesday, March 21, 2006 2:37 PM
Subject: Re: [obm-l] Prove that 22/7 > pi.

Boa tarde

22/7 é a *famosa* aproximação usada por Arquimedes para \pi.

Além da maneira exposta, pode-se obter esse resultado usando fatos absolutamente elementares de frações contínuas (ou "continuadas" como parece que alguns modernosos gostam de chamar), uma vez que 22/7 aparece naturalmente ao expandir \pi em frações contínuas (é a segunda reduzida).

Mais detalhes podem ser obtidos no livro

"Continued fractions" de Beskin, N., Editora Mir (coleção Little math. library)

Esse livro é muito bom e elementar, totalmente acessível a estudantes do segundo grau.

(deve haver alguma trradução horrorosa para castelhano ou, uma pior ainda, para português)

Manuel Garcia

On 3/21/06, Luís Lopes < qed_texte@hotmail.com> wrote:
Sauda,c~oes,

Achei esta mensagem interessante.

Um abraço,
Luís


>From: "Nikolaos Dergiades" <ndergiades@.....>
>Reply-To: Hyacinthos@yahoogroups.com
>To: < Hyacinthos@yahoogroups.com>
>Subject: RE: [EMHL] Prove that 22/7 > pi
>Date: Sun, 19 Mar 2006 22:33:33 +0200
>
>Dear friends,
>M. T. ZED wrote:
>
> > Prove that 22/7 > pi.
> > Help me please.
>
>We have
>4/(x^2+1) = x^6 - 4x^5 + 5x^4 - 4x^2 + 4 - x^4(1-x)^4/(x^2+1)
>or in the interval ( 0, 1)
>4/(x^2+1) <  x^6 - 4x^5 + 5x^4 - 4x^2 + 4
>and by integration from 0 to 1 we get pi < 22/7.
>Does anybody knows a geometric or a simpler proof?
>
>Best regards
>Nikos Dergiades

Escreva

x^4(1-x)^4 = x^4(x^4 - 4x^3 + 6x^2 - 4x + 1) .

Agora some e subtraia termos para obter múltiplos de x^2 +1:

x^8 - 4x^7 + 6x^6 - 4x^5 + x^4 = x^8 + 6x^6 + x^4 - 4x^5(x^2 + 1)
= (x^6-4x^5)(x^2 + 1) + 5x^6 + x^4 = (x^6 - 4x^5 + 5x^4)(x^2+1) - 4x^4
= (x^6 - 4x^5 + 5x^4 - 4x^2)(x^2 + 1) + 4x^2
= (x^6 - 4x^5 + 5x^4 - 4x^2 + 4)(x^2 + 1) - 4

Transpondo e dividindo por x^2 + 1, vem:

4/(x^2+1) = x^6 - 4x^5 + 5x^4 - 4x^2 + 4 - x^4(1-x)^4/(x^2+1)  qed


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================