[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] Exercícios - Fatoração
- To: obm-l@xxxxxxxxxxxxxx
- Subject: [obm-l] Exercícios - Fatoração
- From: Daniela Yoshikawa <danieleakemi@xxxxxxxxxxxx>
- Date: Sun, 3 Jul 2005 14:08:01 -0300 (ART)
- DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws; s=s1024; d=yahoo.com.br; h=Message-ID:Received:Date:From:Subject:To:MIME-Version:Content-Type:Content-Transfer-Encoding; b=oicAjG9vLMadfrUE9TOz1v5M9h1/0nqO+/x8Bfzw2+AwukQW/o8tZUd98Nrfa22B86hTknxCkIaZ0UMrvtsnq+osksSELc+1gZneYZ5VwlUV+ST4zoj48ovrKnX61sFMWfmgsXm7Y+Ab/PvnLpaAja4pbX/Q5oqADQCkDqBdnFE= ;
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
Alguém pode me ajudar nestes exercícios?
Fatorar:
1) (a-b)c^3 - (a-c)b^3 + (b-c)a^3
2) a^3(a^2 - 7)^2 - 36a
3) a+b+c = 0 -> (a^5 + b^5 + c^5)/5 = (a^3 + b^3 + c^3)/3 . (a^2 + b^2 + c^2)/2
4) Prove that if a/(b-c) + b/(c-a) + c/(a-b) = 0, where a<>b, a<>c, b<>c, then a/(b-c)^2 + b/(c-a)^2 + c/(a-b)^2 = 0
Obrigada!
__________________________________________________
Converse com seus amigos em tempo real com o Yahoo! Messenger
http://br.download.yahoo.com/messenger/