[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] complexos e a circunferencia



Pessoal, transcrevo aqui uma passagem de um livro que até agora nao 
consegui compreender perfeitamente. Permitam que eu a escreva em ingles

notacao:
z' = conjugado de z.

"The strong connections between the operations of complex numbers and 
the geometry of the plane enable us to specify certain important 
geometrical objects by means of complex equations. The most obvious case 
is that of the circle {z : |z - c| = r} with centre c and radius r >=0. 
This easily translates to the familiar form of the equation of a circle: 
if z = x + iy and c = a + ib, then |z-c|=r if and only if |z-c|^2 = r^2, 
that is, if and only if (x-a)^2 + (y-b)^2 = r^2. *The other form, x^2 + 
y^2 + 2gx + 2fy + c = 0, of the equation of the circle can be rewritten 
as zz' + hz + (hz)' + c = 0, where h = g -if. More generally, we have 
the equation Azz' + Bz + (Bz)' + C = 0, where A(!=0) and C are real, and 
B is complex. (...)"

Realmente nao consegui entender a equacao geral da circunferencia que 
ele apresenta
x^2 + y^2 + 2gx + 2fy + c = 0

Expandi
|z-h|^2 = r^2
e chego em
x^2 + y^2 - 2gx + 2fy + g^2 + f^2 - r^2...

Ele tb nao deveria definir quem é f e g antes de apresentar a equacao?

Obrigado

Niski
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================