[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re: [obm-l] Olimpíada do Cone Sul



n = 10a + b - a^2 + b^2, com 1 =< n =< 99.
 
n é inteiro, logo a e b também devem ser. O valor máximo para b é 1/2, cujos inteiros mais próximos são 0 e 1.
 
 
----- Original Message -----
Sent: Tuesday, September 07, 2004 2:02 AM
Subject: Re: [obm-l] Olimpíada do Cone Sul

Valeu Bruno,

Sua solução está certa, sim. Só não entendi uma passagem:

... b=1/2 => maximo em 1 ou 0 ...



Em uma mensagem de 7/9/2004 01:19:14 Hora padrão leste da Am. Sul, bfreis@gmail.com escreveu:



1) 10a+b-a^2-b^2
f(a)=10a-a^2
f'(a)=-2a+10
f'(a)=0 => a=5 é ponto maximo
g(b)=b-b^2=b(1-b)
g'(b)=-2b+1
g'(b)=0 => b=1/2 => maximo em 1 ou 0

entao o inteiro positivo n para a diferenca ser maxima é n=50 ou n=51

está certo?

até


----- Original Message -----
From: faelccmm@aol.com <faelccmm@aol.com>
Date: Mon, 6 Sep 2004 23:15:03 EDT
Subject: [obm-l] Olimpíada do Cone Sul
To: obm-l@mat.puc-rio.br

Olá pessoal,

1) De cada número inteiro positivo n, n = < 99, subtraímos a soma dos
quadrados de seus algarismos. Para que valores de n esta diferença é a
maior possível ?

(...)