[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Qual O período de uma função?
On Mon, Jan 26, 2004 at 11:30:14PM -0200, Marcelo Rufino de Oliveira wrote:
>
>
> > On Mon, Jan 26, 2004 at 09:24:51PM +0000, Márcio Pinheiro wrote:
> > > Uma de minhas várias dúvidas refere-se à seguinte pegunta: qual o
> período de
> > > determinada função, não necessariamente dada por uma lei de formação
> > > explícita, que possui determinada propriedade?
> > > Um exemplo clássico é em relação a uma função real f para a qual vale a
> > > propriedade:
> > > f(x+a)=[1+f(x)]/[1-f(x)], para os valores de x em que f(x) difere de 1,
> > > sendo a um real não nulo.
> >
> > Acho que a única coisa que falta é exibir uma f satisfazendo esta
> > condição e para a qual 4a seja período fundamental.
> > O que não é muito difícil: tome b um número real e defina
> >
> > f(x) = b para todo x no intervalo [0,a),
> > = (1+b)/(1-b) para x no intervalo [a,2a),
> >
> > e assim por diante. Para quase todo b o período fundamental
> > será 4a. Ou, se você estiver interessado em uma função mais bonitinha,
> > tome f(x) = tan((4*x)/(a*pi)). A fórmula para f segue da fórmula
> > para tan(u+v).
>
>
> Não entendi, esta justificativa. Posso estar errado, mas o simples fato de
> exibir uma função cujo período fundamental seja 4a realmente garante que
> toda função que satisfaz f(x+a)=[1+f(x)]/[1-f(x)] possui período
> fundamental 4a???
Claro que não, isto é falso. O que eu estou afirmando é que:
(a) Toda função satisfazendo a identidade f(x+a)=(1+f(x))/(1-f(x))
para todo x tem período 4a, i.e., f(x+4a) = f(x) para todo x.
(b) Existe uma função nesta classe para a qual o período 4a é
o período fundamental.
Para complementar, dada a sua pergunta, eu diria ainda:
(c) Para todo inteiro positivo ímpar k, existem funções nesta classe
com período 4a/k.
De fato, basta tomar f(x) = tan((4*s*x)/(k*a*pi)) onde s = (-1)^((k-1)/2).
(d) Nenhuma função nesta classe tem período fundamental 4a/k, k par.
De fato, f(x+2a) = -1/f(x) nunca é igual a f(x).
(e) Nenhuma função nesta classe é constante.
Veja a demonstração de (d).
> Na verdade a minha dúvida (e provavelmente a do Márcio) é se é possível
> garantir que 4a é o período mínimo de todas as funções que satisfazem a
> equação funcional anterior ou se no máximo podemos afirmar que 4a é um
> período (comum a todas)? Além do mais, podemos afirmar que todas as funções
> que satisfazem f(x+a)=[1+f(x)]/[1-f(x)] possuem o mesmo período
> fundamental??? Lembremos que a manipulação algébrica somente garante que 4a
> é UM período...
Acho que eu respondi a sua dúvida para esta classe de funções?
Acho que você pode resolver o mesmo problema para o outro exemplo
que você deu, ou seja:
Conside a classe de funções f que satisfazem f(x) = f(x+1) + f(x-1)
para todo x. Prove que toda função nesta classe é periódica e determine
todos os valores possíveis para o período fundamental.
[]s, N.
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================