Olá,
Retorno
com essas dúvidas:
1°)
(IMO/1996) Let ABCDEF be a convex hexagon such that AB||DB, BC||///ef and
CD||AF. Let Ra, Rc, Re denote the circumradii or triangles FAB, BCD, DEF,
respectively, and let P denote the perimeter or hexagon. Prova that Ra + Rc +
Re >= P/2.
2°)
Vietnam i) Solve
the system of equations raiz(3x)*[1+1/(x+y)]=2 riaz(7y)*[1-1/(x+y)]=4*raiz(2) ii)
Determine all functions f: N -> N satisfying (for all n E N) f(n) + f(n+1) =
f(n+2)*f(n+3) - 1996 iii) Let
a,b,c,d be four nonnegative real numbers satisfying the condition 2(ab + ac + ad + bc+ bd +
cd) + abc + abd + acd + bcd = 16. Prove that
a + b + c + d >= (2/3)*(ab + ac + ad + bc + bd + cd) and determine when
equality occurs. 3°)
Irish Mathematics Olympiad Training 2000 i)Find all
integers x,y satisfying the equation ii)Find a
solution of the simultaneous equations 10°) Sejam a, b, c, d números reais positivos, tais que d = max{a,b,c,d). Demonstrar que a*(d-c) + b*(d-a) + c*(d-b) =< d² Igor Correia Oliveira, #Mathematics |