1°)
(IMO/1996) Let ABCDEF be a convex hexagon such that AB||DB, BC||///ef and
CD||AF. Let Ra, Rc, Re denote the circumradii or triangles FAB, BCD, DEF,
respectively, and let P denote the perimeter or hexagon. Prova that Ra + Rc +
Re >= P/2.
2°)
Vietnam i) Solve
the system of equations raiz(3x)*[1+1/(x+y)]=2 riaz(7y)*[1-1/(x+y)]=4*raiz(2) ii)
Determine all functions f: N -> N satisfying (for all n E N) f(n) + f(n+1) =
f(n+2)*f(n+3) - 1996 iii) Let
a,b,c,d be four nonnegative real numbers satisfying the condition 2(ab + ac + ad + bc+ bd +
cd) + abc + abd + acd + bcd = 16. Prove that
a + b + c + d >= (2/3)*(ab + ac + ad + bc + bd + cd) and determine when
equality occurs. 4°)
Irish Mathematics Olympiad Training 2000 i)Find all
integers x,y satisfying the equation ii)Find a
solution of the simultaneous equations 6°) (USA) Prove that the average of the numbers n*sin(n°) (n=2, 4, 6, ..., 180) is cot(1°). 8°) Mostre que existe
um número inteiro positivo na seqüência de Fibonacci que é divisível por
1000. 9°)
Sejam a, b, c, d números reais positivos, tais que d = max{a,b,c,d). Demonstrar
que a*(d-c) + b*(d-a) + c*(d-b) =< d²
|