[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] somatorio



Sauda,c~oes,

Hiii, a solu��o que conhe�o � realmente
longa e um pouco dif�cil. Se n�o tem outra
mais simples, acho pouco prov�vel algum
candidato ter resolvido a quest�o na hora.
Logo, quest�o fora de prop�sito.

N�o poderei apresentar a solu��o aqui. Ela
usa diversos resultados conhecidos intermedi�rios
que podem ser vistos/deduzidos lendo-se o
livro do Knuth "Fundamental Algorithms", Vol. 1.

O resultado final que nos interessa �:

\sum_{0 <= k <= r}  C(r-k,m) C(s+k,n) = C(r+s+1,m+n+1),

onde inteiro n >= inteiro s >= 0,
          inteiro m >= 0, inteiro r >= 0.

Colocando r=n, s=0 e n=m, vem:

\sum_{0 <= k <= n}  C(n-k,m) C(k,m) = C(n+1,2m+1).

> C(n+1,2m+1)=som(de k=o ate n) C(n-k,m) C(k,m)

[]'s
Lu�s

-----Mensagem Original-----
De: adr.scr.m <adr.scr.m@bol.com.br>
Para: <obm-l@mat.puc-rio.br>
Enviada em: s�bado, 6 de julho de 2002 14:29
Assunto: [obm-l] somatorio


> Alguem pode me ajudar nesse somatorio,
>  caiu no IME em 1980,
>
> Prove a seguinte identidade
> C(n+1,2m+1)=som(de k=o ate n) C(n-k,m) C(k,m)
> onde n e m sao inteiros positivos e
> C(n,m)=  n! /[ (n-m)! m! ]
> para n >= m   e C(n,m)=0 para n < m.
> Obrigado.
> Adriano.
>
>
> __________________________________________________________________________
> AcessoBOL, s� R$ 9,90! O menor pre�o do mercado!
> Assine j�! http://www.bol.com.br/acessobol
>
>
> =========================================================================
> Instru��es para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> O administrador desta lista � <nicolau@mat.puc-rio.br>
> =========================================================================
>
>

=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista � <nicolau@mat.puc-rio.br>
=========================================================================