[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Trigonometria



Para que P(x)=ax^2 + bx + c possua raizes reais temos que b^2-4ac >=0

Então

tg^2(y) - 4.sen(y).sec^2(y) >= 0

Para y=0 ou y=pi ou y=2.pi vale a desigualdade acima.

Manipulando a desigualdade:
tg^2(y) >= 4.sen(y)/cos^2(y) = 4.tg(y)/cos(y)

Para y=pi/2 ou y=3.pi/2 o polinômio não está definido.

Para 0<y<pi/2 ou pi<y<3.pi/2, onde tg(y)>0 :
tg(y) >= 4/cos(y)
sen(y) >= 4 Impossível!

Para pi/2<y<pi ou 3.pi/2<y<2pi, onde tg(y)<0 :
tg(y) <= 4/cos(y)
sen(y) <= 4   Verdade para todo y!!

Logo, os valores de y em [0;2pi] tais que P admita somente raízes reais são
o zero e os valores dos intervalos (pi/2;pi] e (3.pi/2;2.pi]

Espero que esteja tudo certinho

Até mais

Vinicius José Fortuna


----- Original Message -----
From: "Moacyr Moreira" <moacyr81@yahoo.com.br>
Subject: [obm-l] Trigonometria


>  Ex1: Dado Polinômio P definido por P(x)=seny - (tgy)x
> + (sec^2y)x^2, os valores de y no intervalo [0;2pi]
> tais que P admita somente raízes reais, são ?


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================