[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[SPAM] [obm-l] algebra linear



SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam.  The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM: 
SPAM: Content analysis details:   (5.80 hits, 5 required)
SPAM: X_MAILING_LIST     (-0.3 points) Found a X-Mailing-List header
SPAM: SPAM_PHRASE_00_01  (0.8 points)  BODY: Spam phrases score is 00 to 01 (low)
SPAM: RCVD_IN_ORBS       (2.2 points)  RBL: Received via a relay in orbs.dorkslayers.com
SPAM:                    [RBL check: found 228.198.85.209.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points)  RBL: Received via a relay in relays.osirusoft.com
SPAM:                    [RBL check: found 228.198.85.209.relays.osirusoft.com.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points)  RBL: DNSBL: sender is Confirmed Open Relay
SPAM: 
SPAM: -------------------- End of SpamAssassin results ---------------------

------=_Part_7465_32968829.1209824205743
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline

Dado o sistema de equacoes simultaneas representado por

 Ax=3Db,
onde A \in Z^mxn, com posto igual a m, b \in Z^m,  b^t =3D (b1,b2,...,bm) ,=
 x
\in Rn, x^t =3D (x1,x2,...,xn),
A =3D (a_ij) , i =3D1,2,...,m, e j =3D 1,2,...n.

Se x^t =3D (x1,x2,...,xn) for uma solucao b=E1sica de Ax=3Db, demonstrar qu=
e para
todo
j :  | x_j| <=3D m! alfa^m-1 beta, onde alfa =3D max_ij{|a_ij|} e beta =3D =
max_i
{|b_i|}

A diga =E9 usar Cramer.

Nao consegui.

Obrigado.

------=_Part_7465_32968829.1209824205743
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline

Dado o sistema de equacoes simultaneas representado por<br><br>&nbsp;Ax=3Db=
, <br>onde A \in Z^mxn, com posto igual a m, b \in Z^m,&nbsp; b^t =3D (b1,b=
2,...,bm) , x \in Rn, x^t =3D (x1,x2,...,xn), <br>A =3D (a_ij) , i =3D1,2,.=
..,m, e j =3D 1,2,...n. <br>
<br>Se x^t =3D (x1,x2,...,xn) for uma solucao b=E1sica de Ax=3Db, demonstra=
r que para todo <br>j :&nbsp; | x_j| &lt;=3D m! alfa^m-1 beta, onde alfa =
=3D max_ij{|a_ij|} e beta =3D max_i {|b_i|}<br><br>A diga =E9 usar Cramer.<=
br><br>Nao consegui.<br>
<br>Obrigado.<br>

------=_Part_7465_32968829.1209824205743--
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================