[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[SPAM] Re: [obm-l] sistema de equaçoes polinomiais
SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam. The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM:
SPAM: Content analysis details: (5.30 hits, 5 required)
SPAM: IN_REP_TO (-0.8 points) Found a In-Reply-To header
SPAM: REFERENCES (-0.5 points) Has a valid-looking References header
SPAM: X_MAILING_LIST (-0.3 points) Found a X-Mailing-List header
SPAM: SPAM_PHRASE_00_01 (0.8 points) BODY: Spam phrases score is 00 to 01 (low)
SPAM: QUOTED_EMAIL_TEXT (-0.8 points) BODY: Contains what looks like a quoted email text
SPAM: MAILTO_LINK (0.2 points) BODY: Includes a URL link to send an email
SPAM: MIME_EXCESSIVE_QP (1.0 points) RAW: Excessive quoted-printable encoding in body
SPAM: RCVD_IN_ORBS (2.2 points) RBL: Received via a relay in orbs.dorkslayers.com
SPAM: [RBL check: found 177.146.85.209.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points) RBL: Received via a relay in relays.osirusoft.com
SPAM: [RBL check: found 177.146.85.209.relays.osirusoft.com.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points) RBL: DNSBL: sender is Confirmed Open Relay
SPAM: AWL (0.4 points) AWL: Auto-whitelist adjustment
SPAM:
SPAM: -------------------- End of SpamAssassin results ---------------------
------=_Part_31505_20206772.1201879689628
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline
Bom, eu buscava uma referencia, pois nao sei muito bem a generalidade que
preciso. Mas vou tentar formular o problema de forma mais especifica.
Considere um sistema de polinomios de duas icognitas e duas equacoes da
forma
a0 + a1x + a2y + a3xy + a4x^2 + a5y^2 + a6x^2y + a7xy^2 + a8x^3 + a9y^3 =3D=
0
b0 + b1x + b2y + b3xy + b4x^2 + b5y^2 + b6x^2y + b7xy^2 + b8x^3 + b9y^3 =3D=
0
Sao todas as combinacoes de x y com soma dos expoentes <=3D 3
Que restri=E7oes ou condi=E7oes poderiam ser colocados nos coeficientes ai =
e bi
(i =3D 0,1...9) para que eu tenha certeza que existe pelo menos uma solu=E7=
ao
real para o sistema.
referencias sobre o tema ajudariam tambem.
Obrigado
Tico
Em 31/01/08, flnlucatelli . <flnlucatelli@xxxxxxxxx> escreveu:
>
> MOSTRA O SISTEMA, pois n=E4o h=E1 uma f=F3rmula m=E1gica para resolver to=
dos
> com as caracter=EDsticas que voc=EA forneceu!
> QUAL =E9 o sistema?
>
> 2008/1/29, Alexandre Gon=E7alves <tico.goncalves@xxxxxxxxx>:
> > Ola!
> >
> > Encontrei um sistema de equa=E7oes polinomiais em varias variaveis cujo
> grau
> > mais alto e 5, e estou interessado na existencia de solucoes reais dest=
e
> > sistema. Alguem conhece alguma referencia ou teorema que possa me
> ajudar...
> >
> > Obrigado
> >
> > Tico
> >
>
> =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D
> Instru=E7=F5es para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
> =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D
>
------=_Part_31505_20206772.1201879689628
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline
Bom, eu buscava uma referencia, pois nao sei muito bem a generalidade que p=
reciso. Mas vou tentar formular o problema de forma mais especifica.<br><br=
>Considere um sistema de polinomios de duas icognitas e duas equacoes da fo=
rma<br>
<br>a0 + a1x + a2y + a3xy + a4x^2 + a5y^2 + a6x^2y + a7xy^2 + a8x^3 + a9y^=
3 =3D 0<br>b0 + b1x + b2y + b3xy + b4x^2 + b5y^2 + b6x^2y + b7xy^2 + b8x^3 =
+ b9y^3 =3D 0<br><br>Sao todas as combinacoes de x y com soma dos expoentes=
<=3D 3<br>
<br>Que restri=E7oes ou condi=E7oes poderiam ser colocados nos coeficientes=
ai e bi (i =3D 0,1...9) para que eu tenha certeza que existe pelo menos um=
a solu=E7ao real para o sistema.<br><br>referencias sobre o tema ajudariam =
tambem.<br>
<br>Obrigado<br><br>Tico<br><br><br><br><div><span class=3D"gmail_quote">Em=
31/01/08, <b class=3D"gmail_sendername">flnlucatelli .</b> <<a href=3D"=
mailto:flnlucatelli@xxxxxxxxx">flnlucatelli@xxxxxxxxx</a>> escreveu:</sp=
an><blockquote class=3D"gmail_quote" style=3D"border-left: 1px solid rgb(20=
4, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;">
MOSTRA O SISTEMA, pois n=E4o h=E1 uma f=F3rmula m=E1gica para resolver todo=
s<br>com as caracter=EDsticas que voc=EA forneceu!<br>QUAL =E9 o sistema?<b=
r><br>2008/1/29, Alexandre Gon=E7alves <<a href=3D"mailto:tico.goncalves=
@gmail.com">tico.goncalves@xxxxxxxxx</a>>:<br>
> Ola!<br>><br>> Encontrei um sistema de equa=E7oes polinomiais em=
varias variaveis cujo grau<br>> mais alto e 5, e estou interessado na e=
xistencia de solucoes reais deste<br>> sistema. Alguem conhece alguma re=
ferencia ou teorema que possa me ajudar...<br>
><br>> Obrigado<br>><br>> Tico<br>><br><br>=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D<br>Instru=E7=F5es pa=
ra entrar na lista, sair da lista e usar a lista em<br><a href=3D"http://ww=
w.mat.puc-rio.br/~obmlistas/obm-l.html">http://www.mat.puc-rio.br/~obmlista=
s/obm-l.html</a><br>
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D<br></=
blockquote></div><br>
------=_Part_31505_20206772.1201879689628--
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================