[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[SPAM] [obm-l] Re: [obm-l] Problema com polinômios
SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam. The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM:
SPAM: Content analysis details: (5.80 hits, 5 required)
SPAM: REFERENCES (-0.5 points) Has a valid-looking References header
SPAM: X_MAILING_LIST (-0.3 points) Found a X-Mailing-List header
SPAM: USER_AGENT_OE (0.2 points) X-Mailer header indicates a non-spam MUA (Outlook Express)
SPAM: GAPPY_TEXT (0.0 points) BODY: Contains 'G.a.p.p.y-T.e.x.t'
SPAM: SPAM_PHRASE_00_01 (0.8 points) BODY: Spam phrases score is 00 to 01 (low)
SPAM: BIG_FONT (0.3 points) BODY: FONT Size +2 and up or 3 and up
SPAM: MAILTO_LINK (0.2 points) BODY: Includes a URL link to send an email
SPAM: MIME_EXCESSIVE_QP (1.0 points) RAW: Excessive quoted-printable encoding in body
SPAM: RCVD_IN_ORBS (2.2 points) RBL: Received via a relay in orbs.dorkslayers.com
SPAM: [RBL check: found 219.39.76.201.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points) RBL: Received via a relay in relays.osirusoft.com
SPAM: [RBL check: found 219.39.76.201.relays.osirusoft.com.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points) RBL: DNSBL: sender is Confirmed Open Relay
SPAM: AWL (-1.2 points) AWL: Auto-whitelist adjustment
SPAM:
SPAM: -------------------- End of SpamAssassin results ---------------------
This is a multi-part message in MIME format.
------=_NextPart_000_004E_01C856CB.B53A3620
Content-Type: text/plain;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
Ol=E1 Salhab,
N=E3o entendi muito bem...
As congru=EAncias que voc=EA usou saem do teorema das raizes racionais =
certo?
Mas por que elas valem para os outros coeficientes?
E esse m=E9todo n=E3o vai acabar num coeficiente diferente de 1 para =
x^n?
abra=E7os
----- Original Message -----=20
From: Marcelo Salhab Brogliato=20
To: obm-l@xxxxxxxxxxxxxx=20
Sent: Monday, January 14, 2008 9:22 AM
Subject: Re: [obm-l] Problema com polin=F4mios
Ol=E1 Igor,
estou tentando encontrar um contra-exemplo (pra mim, =E9 um =F3timo =
jeito de se encontrar uma demonstra=E7=E3o.. hehe!)
p(x) =3D x^n + a_1*x^(n-1) + a_2*x^(n-2) + ... + a_(n-1)*x + a_n
vamos supor que: p(a) =3D p(b) =3D p(c) =3D p(d) =3D 5, e p(k) =3D 8=20
onde a, b, c, d, k sao primos entre si dois a dois.
deste modo:
p(a) =3D 5 =3D a_n (mod a)
p(b) =3D 5 =3D a_n (mod b)
p(c) =3D 5 =3D a_n (mod c)
p(d) =3D 5 =3D a_n (mod d)
p(k) =3D 8 =3D a_n (mod k)
pelo teorema chines do resto, conseguimos determinar a_n (mod =
a.b.c.d.k)
fazendo: g(x) =3D [p(x) - a_n]/x, temos que: g(a), g(b), g(c), g(d) e =
g(k) est=E3o definidos..
ent=E3o, usando a mesma id=E9ia, determinamos a_(n-1).
seguindo esta id=E9ia, conseguimos determinar todos os coeficientes do =
polin=F4mio!=20
qual o erro nesta id=E9ia? n=E3o encontrei...
abra=E7os,
Salhab
2008/1/12 Igor Battazza <battazza@xxxxxxxxx>:
Ol=E1 pessoal,
estou com d=FAvidas na seguinte quest=E3o:
Dado o polin=F4mio p(x) =3D x^n + a_1*x^(n-1) + a_2*x^(n-2) + ... +=20
a_(n-1)*x + a_n com coeficientes inteiros a_1, a_2, ..., a_n, e dado
que tamb=E9m existem 4 inteiros distintos a, b, c e d tal que p(a) =
=3D
p(b) =3D p(c) =3D p(d) =3D 5, mostre que n=E3o existe inteiro k tal =
que p(k) =3D
8.=20
N=E3o consigo pensar em nenhuma restri=E7=E3o que implique nisso.
Obrigado,
Igor.
=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D
Instru=E7=F5es para entrar na lista, sair da lista e usar a lista em =
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D
------=_NextPart_000_004E_01C856CB.B53A3620
Content-Type: text/html;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=3DContent-Type content=3D"text/html; =
charset=3Diso-8859-1">
<META content=3D"MSHTML 6.00.2900.3243" name=3DGENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=3D#ffffff>
<DIV><FONT face=3DArial size=3D2>Ol=E1 <FONT face=3D"Times New Roman"=20
size=3D3>Salhab,</FONT></FONT></DIV>
<DIV>N=E3o entendi muito bem...</DIV>
<DIV>As congru=EAncias que voc=EA usou saem do teorema das raizes =
racionais=20
certo?</DIV>
<DIV><FONT face=3DArial size=3D2>Mas por que elas valem para os outros=20
coeficientes?</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>E esse m=E9todo n=E3o vai acabar num =
coeficiente=20
diferente de 1 para x^n?</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT> </DIV>
<DIV><FONT face=3DArial size=3D2>abra=E7os</FONT></DIV>
<BLOCKQUOTE=20
style=3D"PADDING-RIGHT: 0px; PADDING-LEFT: 5px; MARGIN-LEFT: 5px; =
BORDER-LEFT: #000000 2px solid; MARGIN-RIGHT: 0px">
<DIV style=3D"FONT: 10pt arial">----- Original Message ----- </DIV>
<DIV=20
style=3D"BACKGROUND: #e4e4e4; FONT: 10pt arial; font-color: =
black"><B>From:</B>=20
<A title=3Dmsbrogli@xxxxxxxxx =
href=3D"mailto:msbrogli@xxxxxxxxx">Marcelo Salhab=20
Brogliato</A> </DIV>
<DIV style=3D"FONT: 10pt arial"><B>To:</B> <A =
title=3Dobm-l@xxxxxxxxxxxxxx=20
href=3D"mailto:obm-l@xxxxxxxxxxxxxx">obm-l@xxxxxxxxxxxxxx</A> </DIV>
<DIV style=3D"FONT: 10pt arial"><B>Sent:</B> Monday, January 14, 2008 =
9:22=20
AM</DIV>
<DIV style=3D"FONT: 10pt arial"><B>Subject:</B> Re: [obm-l] Problema =
com=20
polin=F4mios</DIV>
<DIV><FONT face=3DArial size=3D2></FONT><FONT face=3DArial =
size=3D2></FONT><FONT=20
face=3DArial size=3D2></FONT><BR></DIV>Ol=E1 Igor,<BR><BR>estou =
tentando encontrar=20
um contra-exemplo (pra mim, =E9 um =F3timo jeito de se encontrar uma=20
demonstra=E7=E3o.. hehe!)<BR><BR>p(x) =3D x^n + a_1*x^(n-1) + =
a_2*x^(n-2) + ... +=20
a_(n-1)*x + a_n<BR><BR>vamos supor que: p(a) =3D p(b) =3D p(c) =3D =
p(d) =3D 5, e p(k)=20
=3D 8 <BR>onde a, b, c, d, k sao primos entre si dois a dois.<BR>deste =
modo:<BR>p(a) =3D 5 =3D a_n (mod a)<BR>p(b) =3D 5 =3D a_n (mod =
b)<BR>p(c) =3D 5 =3D a_n=20
(mod c)<BR>p(d) =3D 5 =3D a_n (mod d)<BR>p(k) =3D 8 =3D a_n (mod =
k)<BR><BR>pelo=20
teorema chines do resto, conseguimos determinar a_n (mod=20
a.b.c.d.k)<BR>fazendo: g(x) =3D [p(x) - a_n]/x, temos que: g(a), g(b), =
g(c),=20
g(d) e g(k) est=E3o definidos..<BR>ent=E3o, usando a mesma id=E9ia, =
determinamos=20
a_(n-1).<BR>seguindo esta id=E9ia, conseguimos determinar todos os =
coeficientes=20
do polin=F4mio! <BR><BR>qual o erro nesta id=E9ia? n=E3o=20
encontrei...<BR><BR>abra=E7os,<BR>Salhab<BR><BR><BR><BR><BR><BR><BR>
<DIV class=3Dgmail_quote>2008/1/12 Igor Battazza <<A=20
href=3D"mailto:battazza@xxxxxxxxx">battazza@xxxxxxxxx</A>>:<BR>
<BLOCKQUOTE class=3Dgmail_quote=20
style=3D"PADDING-LEFT: 1ex; MARGIN: 0pt 0pt 0pt 0.8ex; BORDER-LEFT: =
rgb(204,204,204) 1px solid">Ol=E1=20
pessoal,<BR>estou com d=FAvidas na seguinte quest=E3o:<BR><BR>Dado o =
polin=F4mio=20
p(x) =3D x^n + a_1*x^(n-1) + a_2*x^(n-2) + ... + <BR>a_(n-1)*x + a_n =
com=20
coeficientes inteiros a_1, a_2, ..., a_n, e dado<BR>que tamb=E9m =
existem 4=20
inteiros distintos a, b, c e d tal que p(a) =3D<BR>p(b) =3D p(c) =3D =
p(d) =3D 5,=20
mostre que n=E3o existe inteiro k tal que p(k) =3D<BR>8. =
<BR><BR>N=E3o consigo=20
pensar em nenhuma restri=E7=E3o que implique=20
=
nisso.<BR><BR>Obrigado,<BR>Igor.<BR><BR>=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D<BR>Instru=E7=F5es=20
para entrar na lista, sair da lista e usar a lista em <BR><A=20
href=3D"http://www.mat.puc-rio.br/%7Eobmlistas/obm-l.html"=20
=
target=3D_blank>http://www.mat.puc-rio.br/~obmlistas/obm-l.html</A><BR>=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D<BR></B=
LOCKQUOTE></DIV><BR></BLOCKQUOTE></BODY></HTML>
------=_NextPart_000_004E_01C856CB.B53A3620--
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================