[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[SPAM] [obm-l] Algoritmo do Particionamento



SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam.  The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM: 
SPAM: Content analysis details:   (5.40 hits, 5 required)
SPAM: X_MAILING_LIST     (-0.3 points) Found a X-Mailing-List header
SPAM: TRACKER_ID         (1.3 points)  BODY: Incorporates a tracking ID number
SPAM: SPAM_PHRASE_00_01  (0.8 points)  BODY: Spam phrases score is 00 to 01 (low)
SPAM: LINES_OF_YELLING   (0.2 points)  BODY: A WHOLE LINE OF YELLING DETECTED
SPAM: RCVD_IN_ORBS       (2.2 points)  RBL: Received via a relay in orbs.dorkslayers.com
SPAM:                    [RBL check: found 246.132.85.209.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points)  RBL: Received via a relay in relays.osirusoft.com
SPAM:                    [RBL check: found 246.132.85.209.relays.osirusoft.com.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points)  RBL: DNSBL: sender is Confirmed Open Relay
SPAM: AWL                (-1.9 points) AWL: Auto-whitelist adjustment
SPAM: 
SPAM: -------------------- End of SpamAssassin results ---------------------

Ola Pessoal !

Ola Pessoal !

Em mensagem anterior eu apresentei um algoritmo para o calculo dos
coeficientes  dos polinomios Pi, assim definidos :

P0 = 1
Pi = (1 + (X^i))*Pi-1,  i=1, 2, 3, ...

Ocorre que no passo 2) eu esqueci de carregar as somas anteriores dos
coeficientes, fato observado pelo colega lucas. Aqui vai o algoritmo
correto :

IMAGINE uma matriz de "i" linhas, numeradas de cima para baixo de 1
ate "i'. Essa matriz tera C =[(i*(1+i))/2] + 1 colunas, numeradas da
esquerda para a direita de 0 ate C-1. Representando por C(K,L) o valor
do cruzamento da linha K com a linha L nesta matriz, faca :

C(1,0) = 1, C(1,1) = 1 e C(1,L) = 0 se L > 1

Para cada K > 1 fixado, faca :

1) C(K,L) = 0 se L < K
2) Para todo K =< L =< (K*(K+1))/2 faca
C(K,L) = soma da coluna L – K da linha 1 ate a linha K-1
3) C(K,L) = 0 para L > (K*(K+1))/2

EXEMPLO : calculo dos coeficientes de P7

11000000000000000000000000000
00110000000000000000000000000
00011110000000000000000000000
00001112111000000000000000000
00000111222221110000000000000
00000011122333333221110000000
00000001112234445555444322111

somando as colunas, obtemos :

11122345567788888776554322111

Portanto, o polinomio P7 fica assim :

P7=1+X+(X^2)+2*(X^3)+2*(X^4)+3*(X^5)+4*(X^6)+5*(X^7)+5*(X^8)+6*(X^9)+7*(X^10)+
7*(X^11)+8*(X^12)+8*(X^13)+8*(X^14)+8*(X^15)+8*(X^16)+7*(X^17)+7*(X^18)+6*(X^19)+
5*(X^20)+5*(X^21)+4*(X^22)+3*(X^23)+2*(X^24)+2*(X^25)+(X^26)+(X^27)+(X^28)

O coeficiente de X^L em Pi fornece o numero de maneiras de particionar
L em partes distintas todas menores que I+1. Por exemplo< olhando
acima vemos que o coeficiente de X^15 e 8. Logo, ha 8 maneiras de
particionar 15 em parcelas distintas e menores que 8, veja :

15 = 1+2+3+4+5 = 1+2+5 +7=1+3+4+7=1+3+5+6=2+6+7=2+3+4+6=3+5+7=4+5+6

Um abraco a Todos
Paulo Santa Rita
6,A333,090b07

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================