[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] trigonometria
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] trigonometria
- From: "Nicolau C. Saldanha" <nicolau@xxxxxxxxxxxxxx>
- Date: Thu, 8 Nov 2007 14:23:08 -0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:sender:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references:x-google-sender-auth; bh=9vUzVY3JdOAmsnWbuudW98lkbG9CCiu5B8fDLrW0Zjw=; b=Dlpmk7lW0p//23S4ZLGf+GTxm+TPd9p4vC9f0VR6kFPu7pNXcfVfa8issDZ5xhT+wfn+1b1+G8h73j3hixnRJhAx1PM96XMpIG1IF4OLGCHLQzqOFUUHi+ajGbqlJlVPFb1Kvw6YNaNKOs2ZiJ0hkqGzJtVaybglo993SZfuVLA=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:sender:to:subject:in-reply-to:mime-version:content-type:content-transfer-encoding:content-disposition:references:x-google-sender-auth; b=HRCPOVdb5Me3wb0yrD0Acv9iHxphnqb4eiNszqvkx2slLyYe+EtMq6lv+6uOhvSj+hMwPI/IzS2fg1u6KQcv/hj89nHg6xvyAsXkUiWxMWi3cv3G/+Vyxj5K0F9Hhre9NlRFdfhxchJ2NiX7sZakDIDnAKi8wQsnAm3vb5Qc/nA=
- In-reply-to: <891433.18724.qm@xxxxxxxxxxxxxxxxxxxxxxxxxxx>
- References: <891433.18724.qm@xxxxxxxxxxxxxxxxxxxxxxxxxxx>
- Reply-to: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
On Nov 7, 2007 5:07 PM, Graciliano Antonio Damazo
<bissa_damazo@xxxxxxxxxxxx> wrote:
> Galera, estou com uma dificuldade de resolver este exercicio:
>
> 1) prove que: tg20º.tg30º.tg40º = tg10º
Seja z = exp(pi i/18) = cos(10 graus) + i sen(10 graus).
Temos
i tan(10 graus) = (z-z^(-1))/(z+z^(-1))
i tan(20 graus) = (z^2-z^(-2))/(z^2+z^(-2))
i tan(30 graus) = (z^3-z^(-3))/(z^3+z^(-3))
i tan(40 graus) = (z^4-z^(-4))/(z^4+z^(-4))
donde basta verificar que
(z-z^(-1))(z^2+z^(-2))(z^3+z^(-3))(z^4+z^(-4)) +
(z+z^(-1))(z^2-z^(-2))(z^3-z^(-3))(z^4-z^(-4)) = 0.
Para isso basta expandir o lado esquerdo que dá
2*(z-1)*(z+1)*(z^2+1)*(z^4+1)*(z^12-z^6+1)/z^10.
Assim basta verificar que z^12-z^6+1 = 0.
Mas z^12-z^6+1 = (z^18+1)/((z^2+1)*(z^4-z^2+1)) = 0.
N.
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================