[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Integral



Vivian,

Tens razao, devia ter feito uma substituicao diferente. Nao estava com lapis e papel do lado. Agora arranjei um aqui e fiz. No seu resultado, nao sei se voce quis dizer arco-tangente ou arco-cotangente. A minha integral coincide com a sua se considerar o arco-cotangente e eu a derivei essa vez e esta correta agora.

Olha, quando voce ver potencias de x ao quadrado, por exemplo, x^2+4, 1-x^2, etc, tente construir um triangulo retangulo e coloque nos catetos por exemplo, no seu caso, o cateto oposto como a variavel sqrt(2), o cateto adjacente a variavel x, o angulo entre a hipotenusa e cateto adjancente voce chama de t, e a hipotenusa sera sqrt(x^2+2). Isso e o que chamei de substituicao trigonometrica. Nao foi magica como o nosso amigo anterior falou e nem arte, e um artificio matematico que todo professor de calculo ensina os estudantes a fazer.

Voltando ao problema,

sin(t)=sqrt(2/x^2+2)  (Faca o triangulo retangulo como eu disse).
x=sqrt(2)cotg(t)  (Confira no triangulo retangulo)

=> dx=-sqrt(2)cosec^2(t)

1/(x^2+2)^2 = sin^4(t)/4

Entao,

I = int (sin^4(t)/4)*(-sqrt(2)cosec^2(t))dt

I = -sqrt(2)*int(sin^2(t))/4 dt

I = -(sqrt(2)/4) * int (1/2 - cos(2t)/2)dt

I = -(sqrt(2)/8) * [t - sin(2t)/2] + C

Lembre que sin(2t)=2*cost(2)*sin(t)=2*(sqrt(2/x^2+2)*(x/x^2+2); entao,


I = -(1/4*sqrt(2))*[actg(x/sqrt(2)) - (sqrt(2).x)/(x^2+2)] + C

I = x/(4*(x^2+2)) - (1/4*sqrt(2))*arccotg(x/sqrt(2));


Lembre-se que 1-sin^2(t)=cos(2t) => sin^2(t)=1/2-cos(2t)/2


Saudacoes,

Leandro
Los Angeles, CA.


From: "Vivian Heinrichs" <xjxjbo@xxxxxxxxx>
Reply-To: obm-l@xxxxxxxxxxxxxx
To: obm-l@xxxxxxxxxxxxxx
Subject: Re: [obm-l] Integral
Date: Fri, 12 Oct 2007 21:28:42 -0300

Desculpe minha ignorância, mas o que é sqrt?
Em um livro vi que a resposta da Integral I = dx/(x^2 + 2)^2 é igual a
(x/4(x^2 + 2)) + 1/(4*2^1/2) * arctg (x/(2*1/2)) + C, sendo C a constante...
Não cosigo chegar a esta resposta... e por minha ignorância não cosegui
entender a resolução proposta...
Se alguém coseguir me ajudar, agradeço...
Muito Obrigada.


Em 12/10/07, LEANDRO L RECOVA <leandrorecova@xxxxxxx> escreveu:
>
> Voce pode usar a seguinte substituicao trigonometrica:
>
> (1) sin(t)=sqrt(2)/(x^2+2)
>
> (2) x=sqrt(2).cotg(t)
>
> Entao, de (2) temos:
>
> dx=-sqrt(2)cosec^2(t)
>
> Substituindo na integral temos,
>
> I = int [ -sqrt(2)*csc^2(t)/(2/sin^2(t)]dt
>
> I = int [-sqrt(2)/2]dt
>
> I = [-sqrt(2)/2]*t + C, C e uma constante de integracao. Substituindo (1)
> nessa equacao temos
>
> I = [-sqrt(2)/2]*arcsin(2/(x^2+2)) + C
>
> Saudacoes rubro-negras,
>
> Leandro
> Los Angeles, CA.
>
> >From: "Vivian Heinrichs" <xjxjbo@xxxxxxxxx>
> >Reply-To: obm-l@xxxxxxxxxxxxxx
> >To: obm-l@xxxxxxxxxxxxxx
> >Subject: [obm-l] Integral
> >Date: Fri, 12 Oct 2007 13:30:33 -0300
> >
> >Olá pessoal...
> >Gostaria de saber se alguém sabe resolver a Integral : I = dx/(x^2 + 2)^2
> ,
> >sendo que I é a Integral.
> >Obrigada.
>
>
> =========================================================================
> Instruções para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
> =========================================================================
>


=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================