[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re:[obm-l] Trivial e Incomensur�vel



Ol,a,
bom cara, acho realmente complicado, j� que vc nao disse dominio, nao disse nenhuma caracteristica da funcao, se eh continua, derivavel, injetora, sobrejetora..

mas, eu tentaria algo assim:

Suponha que a transformada de Laplace exista para F(x), entao:

L{f(x+a)} = integral(e^(-st) f(t+a) dt)
fazendo u = t+a, temos: integral(e^(-s(u-a)) f(u)du) = e^(sa) * integral(e^(-su) f(u) du)

logo: L{f(x+a)} = e^(sa) * L{f(x)}

assim, aplicando a transformada de Laplace na igualdade, temos:

L{f(x+a)} = L{f(x)} + aL{g(x)}
e^(sa) * L{f(x)} = L{f(x)} + aL{g(x)}

L{f(x)} = a*L{g(x)}/[e^(sa) - 1]

aplicando a transforma inversa de Laplace, vc consegue obter f(x).

--

outra possivel tentativa, pode ser:

f(x+a) - f(x) = a*g(x)
[f(x+a) - f(x)]/a = g(x)

fazendo o limite quando a->0, temos:
f'(x) = g(x) .... f(x) - f(b) = integral(g(t)dt), de "b" at� "x".

porem, neste caso, admitimos f(x) diferenciavel, e g(x) integravel.

--

espero ter ajudado,
um abra�o,
Salhab



> Favor isolar F(x) na fun��o abaixo em fun��o de g(x0, a (que � um
> par�metro).
> 
> 
> F(x+a)=F(x) +aG(x).
> 
> 
> 
> 
> Se algu�m conseguir em conto um neg�cio interessant�ss�mo sobre essa fun��o.
> 
> 
> 
> Falou pessoal at�....
> n�o deixem de responder....
> achu que voc�s v�o gostar...!!!!
> 


=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================