[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Série Divergente



Oi, pessoal:
 
Achei esse problema interessante:
 
Seja (a_n) uma sequência de termos positivos tal que a série SOMA(n>=1) a_n diverge.
 
Seja s_n = a_1 + a_2 + ... + a_n.
 
Prove que SOMA(n>=1) (a_n/s_n) também diverge.
 
Isso prova que, dada uma série SOMA a_n divergente de termos positivos, sempre existe uma série SOMA b_n, também de termos positivos, que diverge mais lentamente, no sentido de que lim b_n/a_n = 0. Basta tomar b_n = a_n/s_n.
 
[]s,
Claudio.