Sauda¸c~oes, Na revista Mathematics Magazine June 2007 p. 225 deparei-me com a identidade \sum_{k=0}^n (-1)^k \binom{n-k+1}{k} \frac{1}{n-k+1}\binom{2n-2k}{n-k} = = \delta_{n,0} . Ela aparece como corolàrio de uma longa exposiç~ao. Tentando provà-la, seja S_n := \sum_{k=0}^n (-1)^k \binom{n-k+1}{k} \frac{1}{n-k+1}\binom{2n-2k}{n-k} . Uma das idéias é fazer S_n = [x^n] F(x) (coeficiente de x^n em F(x)), onde F(x) é dada por F(x) = \sum_{k\geq 0} \frac{1}{k+1}\binom{2k}{k} x^k (1-x)^{k+1} Fazendo k=0,1,2,3,4 vem: S_n = [x^n] {1 -14x^4 + 28x^5 - 20x^6 + 5x^7 + 14x^4(1-x)^5 + \sum_{k\geq 5} \frac{1}{k+1}\binom{2k}{k} x^k (1-x)^{k+1} } Assim, S_0=1 e S_1=S_2=S_3=S_4=0. Falta provar que [x^n] F(x) = 0 para n\geq 5. Dà pra fazer isso? []'s, Luis Receba GRÁTIS as mensagens do Messenger no seu celular quando você estiver offline. Conheça o MSN Mobile! Cadastre-se já! |