[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[obm-l] CHINA 2003
- To: obm-l@xxxxxxxxxxxxxx
- Subject: [obm-l] CHINA 2003
- From: Joÿffffe3o Silva <d79i3mn8@xxxxxxxxxxxx>
- Date: Sat, 14 Jul 2007 22:21:45 -0300 (ART)
- DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws; s=s1024; d=yahoo.com.br; h=X-YMail-OSG:Received:Date:From:Subject:To:MIME-Version:Content-Type:Content-Transfer-Encoding:Message-ID; b=qWxUA5tXlDA4hkzcfmJM63+Y6KY58oC+aV0loDle19Hb73+gs18QkQxvkDu9i4r0OqVz6/VF+BHoiNes8YrSGz/ZdTfQgv5mSkfiF6xMP3jYs8eu/3UWoUKKGK7MPTG9E5sDpfKvKPU2BPl6O2Z3lbtul1offVGtDDyqddsrdms=;
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
As n raizes do polinomio de coeficientes complexos p(z):
p(z) = z^n + (an)z^(n-1) + ... + (a2)z + (a1), sao dadas por:
z1, z2, ..., zn. Prove que se |a1|^2 + |a2|^2 + ... + |an|^2 <= 1 entao
|z1|^2 + |z2|^2 + ...+ |zn|^2 <= n.
Novo Yahoo! Cadê? - Experimente uma nova busca.