[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] "função potencial" de x



Olá Cláudio.   So algumas observações.

  Veja que se x = 2 , então
    x^x = 4
    x^x^x = 2^4 = 16
    x^x^x^x = 2^16 = 65536
    x^x^x^x^x^... -> oo

deve acontecer o mesmo para x> 2, certo?
Pegue outro número, um pouco menor,
digamos x = 1,02.  Pelas
poucas contas que fiz parece que a função também
cresce sem limite, embora de forma mais lenta.
    Ainda não analisei nada com rigor. Mas não
é dificil fazer um programa no MATLAB ou Matematica
que plote essa função.

    Para x = 1 temos um ponto fixo:  f(x) = x.  Mas a função
parece ter infinitos pontos fixos,
porque f(x^x^x^x^x^ ...) = x^x^x^x^x^...

   A pergunta é 1 é o único ponto fixo?


Claudio Gustavo wrote:

>   Chamei de função potencial (não sei se posso chamá-la assim, mas
> fiz...) de x a função x^x^x^x^x^...(x elevado a x elevado a x elevado
> a x ...).  Como posso demonstrar que, sendo essa a f(x), a função não
> pode ter como imagens 2 e 4? Pois para as duas imagens encontramos x =
> 2^(1/2), mas daí concluímos que 2 = 4!!!  Vou colocar a minha solução.
> Mas gostaria de saber se existem outras considerações e se o que
> pensei está correto.  Primeiro, pode-se demonstrar que a função é
> injetiva (fazendo f(a)=f(b), então a=b) e crescente (fazendo f(x+1)
> maior que f(x)), para o intervalo de x positivo e maior que 1, que é o
> caso, logo é monótona crescente para o intervalo considerado.
> Considerando apenas as imagens naturais, ou seja, f(x)=n, encontramos
> como solução geral x = n^(1/n). Sabe-se que essa função é crescente
> até n = 3 e, a partir daí, ela é decrescente e com limite 1 (logo
> obedece a condição de x positivo e maior que 1). Como a função f(x) no
> dado intervalo é monótona crescente, para uma abscissa maior teremos
> uma imagem maior. Portanto a maior imagem possível, para valores
> naturais, é para quando x = 3^(1/3), logo f(3^(1/3)) = 3. Então a
> função nunca atingirá a imagem igual a
> 4.__________________________________________________
> Fale com seus amigos de graça com o novo Yahoo! Messenger
> http://br.messenger.yahoo.com/

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================