[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] resfriamento de newton - dúvida
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] resfriamento de newton - dúvida
- From: "saulo nilson" <saulo.nilson@xxxxxxxxx>
- Date: Tue, 19 Dec 2006 20:18:38 -0300
- DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws; s=beta; d=gmail.com; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references; b=NvG3YlZVlzoLz4ITrZb0XZQJAs5JyACfu5TebfQOaQ5T8W4J6+fORL0E6oR44Gz3U6hO/2hH0B317NXOx9agUaCnZNWLL0ZvzrNg2cMOav12fzSyQ8FKVucgOmb+K5cgU50JlT6sIHXvrsmeskbcdX0tYXsXanjD3srKLND7pkQ=
- In-Reply-To: <20061116125611.54101.qmail@web58214.mail.re3.yahoo.com>
- References: <20061116125611.54101.qmail@web58214.mail.re3.yahoo.com>
- Reply-To: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
isso ai da logaritmo neperiano.
On 11/16/06, Douglas Alexandre <prof_dougrod@yahoo.com.br> wrote:
Olá colegas sendo a lei de resfriamento de newton dada por:
T ' = k* ( T - Ta)
T(0) = To
Ta : temperatura do ambiente
T : temperatura do corpo
Como acho a solução da EDO?
O Yahoo! está de cara nova. Venha conferir!