[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re: [obm-l] Questões do Livro do Hefez



2) Vejamos o caso o caso a^p - a. Temos que o primo p>= 5 eh impar, e desta
forma p-1 eh par. Assim, p-1 = 2p' para algum inteiro positivo p'.

Temos que a^p - a = a(a^(p-1) -1) = a(a^(2p') - 1) = a(a^p' + 1)(a^p' - 1).
Se a for par, entao eh imediato que a^p - a eh par. Se a for impar, entao
a^p'eh impar e os numeros (a^p' + 1) e (a^p' - 1) sao ambos pares. Logo,
tambem neste caso a^p - a eh par, sendo inclusive multiplo de 4.

Se a for multiplo de 3, entao eh imediato que a^p - a eh tambem multiplo de
3. Se a nao for multiplo de 3, temos 2 casos: se a for par, a^p' eh par.
Logo, um dos numeros (a^p' + 1) ou (a^p -1) eh multiplo de 3 (para todo
numero par n que nao seja multiplo de 3, n-1 ou n +1 eh multiplo de 3). Isto
nos mostra que a^p - a eh multiplo de 3. Se a nao for multiplo de 3 e for
impar, entao a^p' eh um impar nao multiplo de 3. Entao, dentre os numeros
pares (a^p' + 1) e (a^p' - 1) um deles eh necessariamente multiplo de 3 (se
n eh um impar nao multiplo de 3, entao um dos pares n-1 e n+1 eh sempre
multiplo de 3).
Chegamos assim aa conclusao de que, nas condicoes dadas, a^p - a eh sempre
par e multiplo de 3, logo eh multiplo de 6. 

Pelo pequeno teorema de Fermat, temos ainda que a^p = a (mod p). Logo a^p -
a eh multiplo de p. E como para o primo p temos  p >3, segue-se, em virtude
da conclusao anterior, que a^p - a eh multiplo de 6p, ou seja, 6p divide a^p
- p, conforme afirmado.

O outro deve ter um saida semelhante, depois vemos se dah pra sair.
De uma conferida, meu conhecimento de teoria dos numeros eh muito limitado.
Artur


> > Agradeço  qualquer ajuda nas seguintes questões:
> >
> > 1) Mostre que existe uma correspondência biunívoca
> > entre pares de primos
> > gêmeos e números n tais que n^2 -1 possui 4
> > divisores.
> >
> > 2) Seja p> 3 um primo. Mostre que a^p - a  e a^p. b-
> > b^p . a são divisíveis
> > por 6p, para todos a>0, com a>b.
> >
> > 3) seja p um primo ímpar. Mostre que se pode
> > escrever p = y^2 - x^2, com  x
> > e y positivos, de modo único.
> >
> > Obrigado
=========================================================================

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================