[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Uma desigualdade legal!



Boa tarde pessoal. Precisco de ajuda nessa desigualdade. Lá vai:

Dados a,b,c,x reais positivos provar que:

[a^(x+2)+1]/[a^(x)*b*c+1]+[b^(x+2)+1]/[b^(x)*a*c+1]+[c^(x+2)+1]/[c^(x)*b*a+1]>=3.

Tentei resolver através da desigualdade de Jensen, considerando a
seguinte função
f(u)=[u^(x+2)+1]/[k*u^(x-1)+1], onde k=a*b*c. Assumindo que a segunda
derivada dessa função é positiva a desigualdade acima é imediata. Meu
problema foi demonstrar que essa segunda derivada é sempre positiva
para qualquer u positivo e x positivo. Tentei derivar implicitamente
mas as contas crescem muito. Gostaria da ajuda de vocês e, quem sabe,
até uma outra solução pro problema. Obrigado!

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================