[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Quadrilatero Incritivel



Sauda,c~oes,

O Dir. j� deu algumas id�ias. A� v�o algumas dicas.

Considere a "figura" abaixo:

                           A

          m
                                                       D

O           B                                        C

Trace o circ. que passa por BCD e marque A na circunfer�ncia.

Sejam AB=a, BC=b, CD=c, DA=d, AC=x, BD=y e seja m a reta
sim�trica do lado AD com rela��o � bissetriz do �ngulo BAC.

Lema: O ponto O \in m pertence ao lado BC sss ABCD � insc.
(c�clico).

Teorema: (Ptolomeu) xy = ac + bd sss ABCD � c�clico.

Na dem. do teorema acima mostra-se que OB = ac/d e que
AO/AC = a/d.

Da� a const. que segue:

1) Numa reta r marque CB = b e construa O tal que BO = ac/d .

2) um lg para A � o c�rculo (B,a). O outro � um c�rc. de Apol�nio
considerando os pontos O e C.

Deixamos os detalhes, a constru��o e a discuss�o para o leitor.

[]'s,
Luis


>From: Johann Peter Gustav Lejeune Dirichlet 
><peterdirichlet2003@yahoo.com.br>
>Reply-To: obm-l@mat.puc-rio.br
>To: obm-l@mat.puc-rio.br
>Subject: Re: [obm-l] Quadrilatero Incritivel
>Date: Sun, 7 Nov 2004 11:39:44 -0300 (ART)
>
>Bem, um modo e usar Ptolomeu e  Hiparco para calcular as diagonais do 
>quadrilatero pretendido. Sai um monte de raizes quadradas, e e aquele tipo 
>de prova sem a menor criatividade, que ate mesmo eu nao gosto.
>Tambem ha uma solu�ao cearense, que consiste em reproduzir a demonstra�ao 
>do Teorema de Ptolomeu. E melhor eu escreve-las depois no forum, pois a 
>coisa fircara mais critica e criptica.
>  Inte!
>
>Claudio Buffara <claudio.buffara@terra.com.br> wrote:
>Aqui vai um problema proposto ha tempos pelo Eduardo Wagner e que nunca foi
>resolvido na lista:
>
>Construir um quadrilatero inscritivel ABCD dados AB e os comprimentos de 
>BC,
>CD e DA.
>
>[]s,
>Claudio.
>


=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================