[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re: [obm-l] A menor bissetriz e o maior lado de um triângulo



Rafael,
Há um erro quando você afirma que IO = IM = IN pois são os raios.
Vale lembrar que o raio tem q fazer 90 graus com o lado (pois o círculo está inscrito), então essa afirmativa só será válida para triângulos equiláteros, ou seja, você particularizou a demonstração.
 
Vou dar uma olhada aqui e, caso consiga, mando uma proposta de solução.
 
Abraços!
Rossi
----- Original Message -----
Sent: Sunday, April 25, 2004 11:41 AM
Subject: Re: [obm-l] A menor bissetriz e o maior lado de um triângulo

Acho que da para ir de trigonometria nao?Depois eu dou uma olhada...

rafsanco <rafsanco@bol.com.br> wrote:
Olá para todos !

Deparei-me com um teorema de geometria euclidiana plana
que dizia o seguinte: ao maior lado de um triângulo
corresponde a menor bissetriz. Tentei prová-lo da
seguinte forma (infelizmente não disponho de recursos
visuais, então usem a imaginação ou esboçem o desenho
num papel para compreenderem melhor o que digo): Seja
ABC um triângulo qualquer, BC seu maior lado, I seu
incentro, x a medida do angulo interno de vértice A, y
a medida do ângulo interno de vértice B, z a medida do
ângulo interno de vértice C, AM a bissetriz de x, BO a
bissetriz de y e CN a bissetriz de z. Sabe-se que x > y
e x > z uma vez que x é oposto a BC (suposto maior
lado). Analisando o triângulo AIC, vê-se que x/2 > z/2,
logo CI > AI. Observando o triângulo AIB é verdadeiro
afirmar que x/2 > y/2, portanto BI >! AI. Ora IM, IN e
IO são segmentos de reta congruentes, visto que são
raios da circunferência inscrita a ABC, então BI + IO >
AI + IM o que implica que BO > AM (BI + IO = BO e AI +
IM = AM), assim como CI + IN > AI + IM o que implica
que CN > AM (CI + IN = CN e AI + IM = AM). Enfim, está
demonstrada a tese AM < BO e AM < CN. A minha
demonstração é válida ou há algo nela que a compromete
(sei lá, algum argumento duvidoso, por exemplo) ? Vocês
conhecem alguma outra maneira de se provar esse
teorema ? Se sim, exponha-a por favor.

Abraços,

Rafael.

__________________________________________________________________________
Acabe com aquelas janelinhas que pulam na sua tela.
AntiPop-up UOL - É grátis!
http://antipopup.uol.com.br/



=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================


TRANSIRE SVVM PECTVS MVNDOQVE POTIRI

CONGREGATI EX TOTO ORBE MATHEMATICI OB SCRIPTA INSIGNIA TRIBVERE

Fields Medal(John Charles Fields)



Yahoo! Messenger - Fale com seus amigos online. Instale agora!