[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Pentagono regular



Re: [obm-l] Pentagono regularSolução bem criativa, Cláudio! Parabéns! ;-)


Abraços,

Rafael de A. Sampaio



----- Original Message -----
From: Claudio Buffara
To: obm-l@mat.puc-rio.br
Sent: Sunday, March 14, 2004 7:25 PM
Subject: Re: [obm-l] Pentagono regular


on 14.03.04 01:36, Claudio Buffara at claudio.buffara@terra.com.br wrote:


on 13.03.04 22:30, Guilherme Pimentel at guigousrj@globo.com wrote:


ABCDE é um pentágono regular inscrito numa circunferência e M é um ponto
qualquer do arco AE. Demonstrar que MB+MD=MA+MC+ME



Tambem descobri uma solucao usando complexos.

Suponha que o circulo eh unitario e centrado na origem e que os vertices
sao:
A = 1, B = w^2, C = w^4, D = w^6 e E = w^8, onde w = exp(i*Pi/5).

Faca M = z e observe que:
(1)   z - 1 = (MA/MA)*(z - 1)
(2)   z - w^2 = (MB/MA)*(z - 1)*w
(3)   z - w^4 = (MC/MA)*(z - 1)*w^2
(4)   z - w^6 = (MD/MA)*(z - 1)*w^3
(5)   z - w^8 = (ME/MA)*(z - 1)*w^4

Em seguida, elimine o fator w^k do lado direito de cada equacao, levando em
conta que w^10 = 1 <==> w^(-1) = w^9 <==> w^(-2) = w^8 <==> etc.

Finalmente, some as equacoes 1, 3 e 5 e subtraia delas as equacoes 2 e 4.
Um pouquinho de algebra e voce chega lah...

[]s,
Claudio.

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================