[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Divisibilidade



on 29.07.03 15:10, amurpe at amurpe@bol.com.br wrote:

> Oi Pessoal , me ajudem a resolver a questão.
> 
> mostre que 1^97 + 2^97 + 3^97 + 4^97+ 5^97 é divisivel
> 
> por 5.
> 
> Muito obrigado.
> 
> Um abraço.
> 
> Amurpe
> 
> 
Oi, Amurpe:

Este eh um caso tipico onde congruencias ajudam (no caso, mod 5):

Para n = 1, 2, 3 e 4, o Pequeno Teorema de Fermat diz que n^4 == 1 (mod 5).
(para estes valores de n e para mod 5, isso pode ser verificado "na mao",
sem usar o PTF)

Logo: n^97 = n^96*n = (n^4)^24*n == 1^24*n == 1*n == n (mod 5).

Obviamente 5^97 == 0 (mod 5).

Assim: 
1^97 + 2^97 + 3^97 + 4^97+ 5^97 == 1 + 2 + 3 + 4 + 0 = 10 == 0 (mod 5)

*****

Ja que o assunto eh divisibilidade, aqui tem um sobre mdc pra voce tentar:

Sejam a, b, c inteiros tais que mdc(b,c) = 1.
Prove que: mdc(a,b*c) = mdc(a,b)*mdc(a,c)


Um abraco,
Claudio.

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================