[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] outra de geometria
OK! Vamos lá, meu amigo!
Faça sua figura.
Você sabe que o ângulo cujo vértice estah na circunferencia vale a
metade do arco "sob sua vista", digamos assim?
Olhe a sua figura. Voce sabe que AHP =
arcomenor(AP)/2+arcomenor(CB)/2? São aqueles teoremas que relacionam
angulos e arcos, quando o vértice está dentro ou fora da circunferencia,
voce conhece-os?
Queremos provar que KQP + KHP = 180.
Veja que KQP = CQP e que KHP = AHP.
Da primeira pergunta acima: KQP=CQP=arcomenor(CP)/2.
Então o que queremos provar equivale a provar que:
arcomenor(CP)/2+ arcomenor(AP)/2+arcomenor(CB)/2 =180.
O que equivale a provar que: arcomenor(CP) + arcomenor(AP)
+arcomenor(CB) =360.
Mas, arcomenor(CP) = arcomenor(CB) + arcomenor(BP)
Mas arcomenor(CB)=arcomenor(AC)
Logo: arcomenor(CP) +arcomenor(AP)+arcomenor(CB)=
arcomenor(CB) + arcomenor(BP)+arcomenor(AP)
+arcomenor(AC)=360.
Um forte abraço, João.
Rafael
<matduvidas@yahoo.com. Para: obm-l@mat.puc-rio.br
br> cc:
Enviado Por: Assunto: Re: [obm-l] outra de geometria
owner-obm-l@sucuri.mat
.puc-rio.br
23/05/2003 10:26
Favor responder a
obm-l
João, sei que um quadrilátero é inscritível se a soma
de dois angulos opostos é 180, mas não entendi sua
explicação. Daria para detalhar um pouco mais?
--- JoaoCarlos_Junior@net.ms.gov.br escreveu: >
> Prezado Rafael,
>
> PHKQ é inscritível sss CQP + AHP = 180 sss
> arcomenor(PC)/2 +
> arcomenor(CB)/2 + arcomenor(PA)/2 = 180 sss
> arcomenor(PC) + arcomenor(CB) +
> arcomenor(PA) = 360, o que é verdade.
> OBS: um quadrilátero é inscritível se a soma
> de dois angulos opostos
> é 180.
> OBS: sss = se e somente se
> Um forte abraço, João.
> AB e CD são dois diâmetros perpendiculares de uma
> circunferência; CP e CQ são cordas desta mesma
> circunferência que interceptam o diametro AB nos
> pontos H e K. Demonstrar que o quadrilátero PHKQ é
> inscritível.
_______________________________________________________________________
Yahoo! Mail
O melhor e-mail gratuito da internet: 6MB de espaço, antivírus, acesso
POP3, filtro contra spam.
http://br.mail.yahoo.com/
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================