[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Loteria Matematica II ( correcao )
Ola Pessoal !
No enunciado abaixo leiam : Numa loteria 7 (SETE) numeros escolhidos
aleatoriamente de {1,2,3, ...,48,49} ...
>From: "Paulo Santa Rita" <p_ssr@hotmail.com>
>Reply-To: obm-l@mat.puc-rio.br
>To: obm-l@mat.puc-rio.br
>Subject: [obm-l] Loteria Matematica II
>Date: Thu, 06 Feb 2003 15:02:16 +0000
>
>Ola Claudio e demais
>colegas desta lista ... OBM-L,
>
>Voce tem certeza que o problema e esse ai embaixo ? Mais que isso : esse
>enunciado e "um problema" ?
>
>Os sub-conjuntos abaixo constituem uma escolha valida :
>
>{1,2,3,4,5,6}
>{7,8,9,10,11,12}
>{13,14,15,16,17,18}
>{19,20,21,22,23,24}
>{25,26,27,28,29,30}
>{31,32,33,34,35,36}
>{1,2,7,8,13,14}
>{3,4,9,10,15,16}
>{5,6,11,12,17,18}
>
>Numa loteria sao sorteados 1 numeros escolhidos aleatoriamente de
>{1,2,3,...,48,49}. Cada cartao de apostas deve ser preenchido com
>exatamente 7 numeros. Uma pessoa pode pode apostar quantos cartoes desejar
>sem pagar nada, desde que quaisquer dois cartoes de sua
>aposta tenham, NO MAXIMO, uma dezena em comum. O primeiro premio e dado a
>pessoa que acertar o maior numero de triplos.
>
>1 ) Exiba uma aposta gratuita que tenha a maxima probabibilidade de ganhar
>o primeiro premio
>2 ) Qual o valor da probabilidade acima ?
>
>Um Abraco a todos
>Paulo Santa Rita
>5,1300,060203
>
>>Você chegou a olhar o problema da Loteria Matemática?
>>Escolha 9 subconjuntos de 6 elementos de {1, 2, ..., 36 } tais que,
>>qualquer que seja T - subconjunto de 6 elementos de { 1, 2, ..., 36 } ->a
>>interseção de T com pelo menos um dos 9 subconjuntos escolhidos é >vazia.
>>
>>Eu achei que tinha resolvido, mas descobri um furo na minha solução.
>>
>>************
>>
>>Um abraço,
>>Claudio.
>
>
>_________________________________________________________________
>MSN Messenger: converse com os seus amigos online.
>http://messenger.msn.com.br
>
>=========================================================================
>Instruções para entrar na lista, sair da lista e usar a lista em
>http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
>O administrador desta lista é <nicolau@mat.puc-rio.br>
>=========================================================================
_________________________________________________________________
MSN Messenger: converse com os seus amigos online.
http://messenger.msn.com.br
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================