[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re: [obm-l] análise combinatória



Um códogo é determinado pela escolha das cores de 6 barras a primeira barra pode ser escolhida de 2 cores, a segunda pode ser escolhida de 2 cores e assim por diante até a 6a barra que pode ser escolhida de 2 cores. Como a escolha da cor de uma barra não interfere na escolha da cor das outras barras o total de códigos será o produto 2^6 = 64. Porém o enunciado descarta a possibilidade de um código conter todas as barras brancas e todas as barras pretas portanto do total devemos descontar estas duas possibilidades e a resposta fica então 64 - 2 = 62.
A "fórmula" que vc colocou na mensagem original dá o total de maneiras que vc pode escolher p objetos dentre n e nào tem nada a ver com o exercício.
 
[]'s MP
----- Original Message -----
Sent: Tuesday, January 14, 2003 9:41 PM
Subject: [obm-l] análise combinatória

Olá pessoal,

Alguém consegue resolver estre problema de análise combinatória:

(U.C SALVADOR) Um código para leitura ótica é constituído por 6 barras brancas ou pretas. Nenhum código tem barras de uma só cor. Veja dois exemplos desses códigos:

Obs: Vou descrever como são estes exemplos:

Imagine dois retângulos, em que cada um é formado por 6  listas verticais, para facilitar a descrição vamos ordenar as listas, ou seja, a 1º (da esquerda para direita), depois 2º...6º lista. Imagine que o primeiro retangulo esta pintado assim: 2º lista e 5º lista (ambas de preto) e o restante de branco. Agora, imagine o segundo retangulo (código de barras) com a 1º, 2º e 5º lista sendo pretas e as restantes brancas.

Dúvida: Por quê podem ser formados 62 (segundo meu gabarito) códigos, distintos entre si? Eu tentei aplicar cn,p=n!/(n-p)!p! mas não cheguei no resultado. Será que é arranjo?