[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re: [obm-l] Polinômios irredutíveis



Caro Eduardo:

Acho que o resultado a seguir pode ajudar:

P(x) = x^4 + 1 é irredutível sobre Z mas é redutível sobre Z/(p) para todo
primo p.

Demonstração:
As raízes de P(x) são exp( i * (2*k+1) * Pi/4 )  k = 0, 1, 2, 3 e a única
fatoração de P(x) em polinômios com coeficientes reais é (x^2 + raiz(2)x +
1)(x^2 - raiz(2)x + 1), a qual envolve coeficientes irracionais. Assim, P(x)
é irredutível sobre Z.

Por outro lado, se p é primo, então p = 2, p = 1 (mod 4) ou p = 3 (mod 4).

p = 2  ==>  x^4 + 1 = (x - 1)^4 (mod 2)

p = 1 (mod 4) ==> -1 é quadrado mod p:
Tome a tal que a^2 = -1 (mod p) ==> x^4 + 1 = (x^2 + a)(x^2 - a)

p = 3 (mod 4) ==> p = 3 (mod 8)  ou  p = 7 (mod 8):
Neste caso, procuremos uma fatoração de x^4 + 1 da forma (x^2 + ax +
b)(x^2 - ax + b):

Multiplicando:  x^4 + 1  =  x^4  +  (2b - a^2)x^2  +  b^2 (mod p)

Igualando os coeficientes:  b^2 = 1 (mod p)   e   a^2 = 2b (mod p)

b^2 = 1 (mod p) ==> b = 1 (mod p) ou b = -1 (mod p)

Se b = 1 (mod p), então:  a^2 = 2b (mod p) ==> a^2 = 2 (mod p) ==> 2 é
quadrado mod p

Se b = -1 (mod p), então:  a^2 = 2b (mod p) ==> a^2 = -2 (mod p) ==> -2 é
quadrado mod p

p = 3 (mod 4) e 2 é quadrado mod p  <==>  p = 7 (mod 8)

p = 3 (mod 4) e -2 é quadrado mod p  <==>  p = 3 (mod 8)

p = 7 (mod 8):
Tome a tal que a^2 = 2 (mod p) e b = 1   ==>   x^4 + 1 = (x^2 + ax +
1)(x^2 - ax + 1)

p = 3 (mod 8):
Tome a tal que a^2 = -2 (mod p) e b = -1   ==>   x^4 + 1 = (x^2 + ax -
1)(x^2 - ax - 1)

**** Fim da demonstração ****


No entanto, você fala em fatoração em Z/(n) para todo n natural, e não
apenas n primo.

Por exemplo, x^4 + 1 é irredutível sobre Z/(4).


Vou continuar pensando no assunto...

Um abraço,
Claudio Buffara.

----- Original Message -----
From: "Eduardo Casagrande Stabel" <dudasta@terra.com.br>
To: <obm-l@mat.puc-rio.br>
Sent: Thursday, December 12, 2002 2:35 AM
Subject: [obm-l] Polinômios irredutíveis


Caros colegas da lista,

é possível que um polinômio de coeficientes inteiros P(X) irredutível se
fatore em Z/(n) para todo n natural ?

Abraço,
Eduardo.

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista é <nicolau@mat.puc-rio.br>
=========================================================================