015601c29102$fddd5c20$4910dcc8@jf">
  
  
  >
Jose Francisco  Guimaraes Costa wrote:
> 
> Sejam z1 e z2 dois números  complexos.
> 
> A operação z1^z2 é definida? Se for, qual  sua definição?
  
   
  >On Mon, Nov 18, 2002 at 10:30:40AM
-0200,  Augusto César Morgado wrote:
>   z1^z2 =  exp (z2 * ln  z1)
>
  
   
  
  >Date
: Mon, 18 Nov 2002 15:08:27 -0200 
  >
>A definição do Morgado é ótima mas é preciso chamar a atenção  para
>o fato de ln z1 não estar tão bem definido assim. A função ln  não
>pode ser definida assim
>
>ln : C - {0} ->  C
>
>precisamos fazer um corte, como por exemplo
>
>ln :  C - {z in R, z <= 0} -> C
>
>e escolhas diferentes do corte  produzem valores diferentes para ln z1.
>
>[]s,  N.
   
  Mais perguntas:
   
  (1) 
Usando a mesma linguagem segundo a qual a expressão  
   
  A = sqrt(B)
   
  é lida como "A é igual à raiz quadrada
de B",  como ler a expressão
   
  ln : C - {z in R, z <= 0} ->
C    ?
   
  (2) N diz "precisamos fazer um corte,
como  por exemplo ... ". Por que precisamos fazer um corte (ou por que "A
função ln  não pode ser definida assim: ln : C - {0} -> C") ?
   
  (3) A afirmação "precisamos fazer
um corte,  como por exemplo ... e escolhas diferentes do corte produzem valores
diferentes  para ln z" me deixa com a idéia de que eu posso escolher o corte
que me convier,  o que faz com que a função "ln z" não tenha uma definição
única. É isso  mesmo?
   
  (4) Faz sentido dizer que um número
complexo  é positivo ou negativo? Se fizer, quando ele é positivo e quando
é  negativo?
   
  (5) Por favor sugiram livros onde
eu possa  encontrar respostas para este tipo de perguntas. Embora eu tenha
estudado  números complexos e trabalhado com eles - sou engenheiro eletrônico
- não me  lembro de ter sido exposto às definições e conceitos acima.
   
  JF (Rio de Janeiro, iniciado na
ciência da  matemática pelo mesmo Prof. Morgado que iniciou o Morgado um
ano depois de  mim)