[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: somatorio



Acho que todos estao respondendo o que nao foi perguntado. Perguntou-se
quanto valia o somat�rio de 1 a n e nao de 1 a infinito.
Se o n eh grande o somatorio eh bem aproximado por logaritmo natural de
n.
Nao ha modo "elementar" de calcular o somatorio. Entretanto ele pode ser
expresso em termos de fun�oes tabeladas (no seculo passado; hoje seria
melhor dizer mapleadas). Consultem, em um livro de Calculo, fun�ao
digama ou fun�ao psi.

F�bio Arruda de Lima wrote:
> 
> Oi amigo,
> Inicialmente, seria interessante voc� adquirir o livro do Prof. Elon Lages
> Lima, Curso de An�lise, e dar uma lida no Cap�tulo de Seq��ncias e S�ries de
> n�meros reais.
> Entretanto, como esclarecimento. Trago o seguinte Teorema:
> "Se Somat�rio de An � uma s�rie convergente ent�o o limite An = 0."
> Entretanto a rec�proca n�o � verdadeira e o contra-exemplo cl�ssico �
> exatemente somat�rio de 1/n. Esta s�rie diverge!
> Gostaria de complementar o assunto trazendo uma pequena t�cnica (aprendi
> vendo em muitos livros) para o calculo de somat�rio.
> Busque transformar o somatorio do termo geral em diferen�a de dois termos.
> Por exemplo:
> Somat�rio (1/(n)(n+1) = A/n - B/(n+1) = (An + A -Bn)/ (n)(n+1)
> A-B=0
> A=1
> Portanto, B=1.
> Assim, temos Somat�rio 1/(n)(n+1) = 1/n - 1/(n+1)
> Temos: 1    - 1/2
>             1/2 - 1/3
>             1/3 - 1/4
>             .............
>             1/n - 1/(n+1)
> Simplificando positivos e negativos, temos:
> Soma = 1 - 1/(n+1)
> 
> ----- Original Message -----
> From: <ksander@ig.com.br>
> To: <obm-l@mat.puc-rio.br>
> Sent: Saturday, March 10, 2001 5:00 PM
> Subject: somatorio
> 
> > Podem me ajudar com este somatorio?
> >
> > 1/k    ;com K variando de 1 ate n
> >
> >
> >