[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: Ajuda urgente: cálculo do volume de um tanque.
Proponho que se rediscuta o conceito de integral feia. Qual eh o problema de
calcular uma integral numericamente?
(So para provocar...)
JP
-----Mensagem Original-----
De: "Ralph Costa Teixeira" <ralph@visgraf.impa.br>
Para: <obm-l@mat.puc-rio.br>
Enviada em: Quinta-feira, 1 de Março de 2001 19:46
Assunto: Re: Ajuda urgente: cálculo do volume de um tanque.
>
> Oi todo mundo.
>
> Voltando ao problema do tanque deitado, as noticias nao sao nada boas
> para o resto do problema. Acaba numa integral muito feia que eu creio
> soh poder ser feita mesmo numericamente.
>
>
> I. O CILINDRO
>
> Na ultima mensagem eu disse que, se o nivel do liquido eh h a partir do
> fundo de um cilindro de raio r e "comprimento" a (pois o cilindro estah
> deitado), entao o volume do liquido lah dentro eh:
>
> V1 = a.r^2. [Pi + (m-1)sqrt(m(2-m)) - arccos(m-1)]
>
> onde eu uso m=h/r para facilitar as coisas. Seria legal marcar o zero
> da escala no centro do cilindro, isto eh, tomar h1 = h-r como variavel
> ao inves de h. Assim, se m=h1/r
>
> V1 = a.r^2. [Pi + m.sqrt(1-m^2) - arccos(m)]
>
> Daqui por diante vou usar esta notacao, marcando h=0 no meio, e assim h
> vai de -r a r. Quem nao gostar, troque h por h+r de volta. :)
>
>
> II. CADA UMA DAS CALOTAS
>
> Uma secao *horizontal* da calota esferica aa altura z (z=0 eh o plano
> horizontal passando pelo centro da esfera) eh um segmento circular. Eu
> peguei uma destas secoes HORIZONTAIS e desenhei-a aqui vista de cima,
> preenchida com s's. O x marca o centro do circulo, R0 eh seu raio e d eh
> a distancia entre o centro e o segmento que delimita o segmento
> circular.
>
> |\
> |s\
> |ss\
> d |sss|
> x----|sss|
> \ |sss|
> \ |ss/
> R0\ |s/
> \|/
>
> Como a secao horizontal estah aa distancia |z| do centro da esfera,
> temos R0=sqrt(R^2-z^2).
>
> Por outro lado, pode-se notar que d eh tambem a distancia do centro da
> ESFERA (que nao eh necessariamente x! O centro da esfera estah na secao
> horizontal z=0!) ao plano usado para corta-la em uma calota. Em outras
> palavras, d=sqrt(R^2-r^2).
>
> Enfim, lembre-se que a area do segmento circular eh a area de um setor
> circular menos um triangulo escolhidos a dedo... A formula eh:
>
> A = (R0)^2.arccos(d/R0) - d.sqrt(R0^2-d^2)
>
> Substitua R0 e d:
>
> A = (R^2-z^2).arccos(sqrt(R^2-r^2)/sqrt(R^2-z^2))
> - sqrt(R^2-r^2).sqrt(r^2-z^2)
>
> Agora voce teria que integrar isso de z=-r a z=h para achar o volume do
> liquido. A segunda parte da integral (a segunda linha da area) eh facil
> por substituicao, eh igual ao calculo feito para o cilindro. Tome de
> novo m=h/r e fique com:
>
> V3 = -r^2.sqrt(R^2-r^2). [Pi + m.sqrt(1-m^2) - arccos m]
>
> A primeira parte eh pior ainda. Use z=R.cost, r/R=p e h/R=q para obter:
>
> V2 = R^3 INT(t = arccos(q) a t = Pi - arccos(p))
> (sint)^3 . arccos(sqrt(1-p^2)/sint) dt
>
> Ateh onde eu sei, esta integral nao pode ser resolvida analiticamente
> (o arccos(K/sint) me faz acreditar nisto), a menos eh claro que p=1 (o
> caso em que r=R, ou seja, em que as calotas sao de fato dois
> hemisferios).
>
> Assim, a melhor opcao eh fazer um calculo numerico desta integral
> usando os seus dados a=14500, r=500 e R=3142... Note que V2 depende de q
> de maneira "simples". Ponha varios valores de q e faca uma tabela... :(
>
>
> III. JUNTANDO TUDO
>
> Em suma, pegue um computador e calcule as seguintes quantidades para
> cada h desejado de -r a r:
>
> p=r/R; q=h/R; m=h/r=q/p;
>
> DENTRO DO CILINDRO:
> V1 = a.r^2.[Pi + m.sqrt(1-m^2) - arccos m]
>
> NAS CALOTAS:
> 2V2 = R^3 INT(t = arccos(q); t = Pi - arccos(p))
> (sint)^3 . arccos(sqrt(1-p^2)/sint) dt
>
> (Resolva numericamente para o valor p fixo que voce tem e usando
> diversos valores de q)
>
> 2V3 = -r^2.sqrt(R^2-r^2). [Pi + m.sqrt(1-m^2) - arccos m]
>
>
> O volume que voce quer eh V1+2V2+2V3.
>
> Eu sei que a resposta parece um pouco decepcionante, mas espero que
> tenha ajudado. As vezes eh mais facil fazer ao contrario: vah enchendo o
> tanque com volumes conhecidos e marcando os valores de h para cada um,
> montando assim a escala "experimentalmente"... Ou faca isso para um
> tanque igual mas menor em escala... :)
>
> > > ---------------------
> > > / \
> > > / \
> > > | |
> > > \-----------------------/
> > > \ /
> > > ---------------------
> > >
> > >
> > Nesse caso temos:
> > a = 14500mm; r = 500mm; R = 3142mm;
> > em que, a = comprimento do cilindro (não considerar as calotas, e sim
apenas
> > o cilindro plano nos lados); r = raio do cilindro; R = raio da calota
até a
>