[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

problemas de treinamento para o Putnam



Dear Luis:

    I have attached the first problem set (on infinite series and
products) for my students preparing for the Putnam.

Cecil

%%%%%%%%%%%

Sauda,c~oes,

O professor Cecil Rousseau me mandou uma lista de
problemas de treinamento para o Putnam. Minha
inten,c~ao e' colocar 2 problemas/semana na lista
e na semana seguinte suas solu,c~oes.

Os problemas est~ao escritos em ingl^es e em
LaTeX.

Ai' v~ao os dois primeiros:

1) Is the following series convergent or divergent?
\[
1 + \frac{1}{2}  \left(  \frac{19}{7} \right) + \frac{2!}{3^2}
\left(  \frac{19}{7} \right)^2 + \frac{3!}{4^3} \left(  \frac{19}{7}
\right)^3 + \frac{4!}{5^4}  \left( \frac{19}{7} \right)^4 + \cdots \; .
\]
\hspace*{\fill} (A-3, 1942)

2) Let $\{a_n\}$ be a decreasing sequence of positive numbers with
limit 0 such that
\[
b_n = a_n - 2a_{n+1} + a_{n+2} \geq 0
\]
for all $n$.  Prove that
\[
\sum_{n=1}^{\infty} n b_n = a_1.
\]
\hspace*{\fill} (A-3, 1948)

N~ao sei o significado de (A-3, 1942) e (A-3, 1948). Vou me
informar.

[ ]'s
Lu'is