[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: i^i ; Moebius....





On Thu, 13 Jul 2000, Bruno Woltzenlogel Paleo wrote:

> Olá,
> 
> -------
> Eu gostaria de saber quanto vale:
> 
> i^i
> 
> Eu fiz o seguinte:
> 
> ln i = a + bi  ==>  (e^a).(cosb+i.senb) = i   ==> a=0 e b=(Pi)/2
> 
> i^i = e^[(lni).i] = e^[(Pi/2).i^2] = e^(-Pi/2), que é um número real.
> 
> Está certo isso?
> 
> Quando eu mandei a HP calcular, ela retornou um par ordenado, onde um dos
> "elementos" era o número que eu encontrei e o outro era o Zero...
> -------

Está certo, exceto que existem várias soluções para a equação e^z = i
(z complexo) e portanto vários valores para ln i.
O que você deu é o que se chamaria de valor principal;
outros valores são (Pi/2 + 2 k Pi)i, k inteiro.
Calculando i^i temos assim os vários valores
e^(-Pi/2 + 2 k Pi), k inteiro.
Note que todos os valores são reais.


As outras perguntas eu passo, por enquanto. []s, N.