[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[SPAM] RES: [obm-l] x^2 - xy + y^2 = Cte
- To: <obm-l@xxxxxxxxxxxxxx>
- Subject: [SPAM] RES: [obm-l] x^2 - xy + y^2 = Cte
- From: "Bouskela" <bouskela@xxxxxxxxx>
- Date: Mon, 30 Jun 2008 01:01:42 -0300
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:received:received:reply-to:from:to:subject:date :mime-version:content-type:x-mailer:in-reply-to:thread-index :x-mimeole:message-id; bh=wWptyAMXjpNQxD19Arf5sMxXtgL4vJ6XU4aqNfNLY74=; b=PjDn0KhaZ19FKuompkyz6ZFxiWUu1USppu+Jy5piMd1SXZnEgnkuS1Yo/XEc/Ezu/Q 44NTlGQvjzR4vfV7gpWmhpD5Ymeurzx9f5pxMdUTu93gyo8ieXmW05XuezmvRH+wLRg5 JtHA2rcJt6rtZLp2JB/zhvLRIK//4F3NVef8I=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=reply-to:from:to:subject:date:mime-version:content-type:x-mailer :in-reply-to:thread-index:x-mimeole:message-id; b=EyLy2so4wQkaXlR3keOouszywCPk9Bm+xVWUi7UJ51i3TON9ywJMkrWJL7JfF+6Ddd yq5xnp7h2yA6uoi8SFbJ6avZf+HM0/Q7KJAf9B6jxAXy8MsZ8mTUEWdc0IRe5NRrun7s 1KTUkZxiz3z6b7JXTUkohbuLv7cBsToLjK+ZY=
- In-reply-to: <3bd00efc0806291958v7a2742fbh9c501e025ce02174@xxxxxxxxxxxxxx>
- Reply-to: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
- Thread-index: AcjaXiv/b8adTfQyTYC4EDAeuHx5SgABo1/A
SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam. The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM:
SPAM: Content analysis details: (6.90 hits, 5 required)
SPAM: IN_REP_TO (-0.8 points) Found a In-Reply-To header
SPAM: X_MAILING_LIST (-0.3 points) Found a X-Mailing-List header
SPAM: SPAM_PHRASE_00_01 (0.8 points) BODY: Spam phrases score is 00 to 01 (low)
SPAM: MAILTO_LINK (0.2 points) BODY: Includes a URL link to send an email
SPAM: RCVD_IN_ORBS (2.2 points) RBL: Received via a relay in orbs.dorkslayers.com
SPAM: [RBL check: found 228.184.233.64.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points) RBL: Received via a relay in relays.osirusoft.com
SPAM: [RBL check: found 228.184.233.64.relays.osirusoft.com.]
SPAM: RCVD_IN_RELAYS_ORDB_ORG (0.6 points) RBL: Received via a relay in relays.ordb.org
SPAM: [RBL check: found 191.105.19.201.relays.ordb.org.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points) RBL: DNSBL: sender is Confirmed Open Relay
SPAM: MISSING_OUTLOOK_NAME (1.1 points) Message looks like Outlook, but isn't
SPAM:
SPAM: -------------------- End of SpamAssassin results ---------------------
This is a multi-part message in MIME format.
------=_NextPart_000_0010_01C8DA4C.DF3B8A50
Content-Type: text/plain;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
Ol=E1, novamente,
=20
P.ex., veja que se a=3D0 , ent=E3o a solu=E7=E3o (-a, -b) =E9 igual =
=E0 solu=E7=E3o (a,
a-b)
=20
Sds.,
AB!
=20
=20
_____ =20
De: owner-obm-l@xxxxxxxxxxxxxx [mailto:owner-obm-l@xxxxxxxxxxxxxx] Em =
nome
de Marcelo Salhab Brogliato
Enviada em: domingo, 29 de junho de 2008 23:58
Para: obm-l@xxxxxxxxxxxxxx
Assunto: Re: [obm-l] x^2 - xy + y^2 =3D Cte
Ol=E1 Bouskela,
sobre o n=FAmero de solu=E7=F5es ser menor ou igual a 4sqrt(4Cte/3) + 2, =
acredito
que esteja correto.
Mas sobre a multiplicidade, vc tem raz=E3o!
Eu cheguei que:
(a, b) ; (-a, -b) ; (b, a) ; (-b, -a) ; (a-b, a) ; (b-a, b) ; (a, a-b) ; =
(b,
b-a) ; (b-a, -a) ; (a-b, -b) ; (-a, b-a) ; (-b, a-b)
totalizando 12 solu=E7=F5es para cada encontrada.
isso vale para a !=3D b
para a=3Db, temos que eliminar: (b, a) ; (-b, -a) ; (b-a, b) ; (b, b-a) =
;
(a-b, -b) ; (-b, a-b)
sobrando apenas 6...
Mas, para a !=3D b, temos 12... e para a =3D b, temos 6... como 6*2 =3D =
12,
podemos afirmar que ser=E1 m=FAltiplo de 6 sempre..
caso eles n=E3o fossem multiplos, ai ficaria mais dif=EDcil afirmar =
alguma
coisa.
n=E3o entendi pq meu desenvolvimento precisa ser ajustado para x ou y =
igual a
zero.
abra=E7os,
Salhab
2008/6/29 Bouskela <bouskela@xxxxxxxxx>:
Ol=E1 Salhab!
=20
Voc=EA est=E1 perto da solu=E7=E3o, entretanto, ainda faltam alguns =
ajustes:
=20
P.ex., se Cte=3D100 , ent=E3o existem apenas 6 solu=E7=F5es para a eq. =
em estudo:
=20
(x, y) =3D (-10, -10) ; (10, 10) ; (10, 0) ; (-10, 0); (0, -10) e (0, =
10)
=20
O mesmo acontece para Cte =3D 1, 3, 4, 9, 12, 16, 25, 27, 36, 48, 64, =
75, 81,
100 etc.
=20
Repare que quando "x" ou "y" s=E3o iguais a "0" seu desenvolvimento =
precisa
ser ajustado...
=20
Sds.,
AB!
_____ =20
De: owner-obm-l@xxxxxxxxxxxxxx [mailto:owner-obm-l@xxxxxxxxxxxxxx] Em =
nome
de Marcelo Salhab Brogliato
Enviada em: domingo, 29 de junho de 2008 21:16=20
Para: obm-l@xxxxxxxxxxxxxx
Assunto: Re: [obm-l] x^2 - xy + y^2 =3D Cte
Ol=E1 Bouskela,
suponha que o par (a, b) seja solu=E7=E3o de x^2 - xy + y^2 =3D Cte
ent=E3o, os pares (b, a), (-a, -b), (-b, -a) tamb=E9m s=E3o =
solu=E7=F5es.
Fatorando, temos: (x-y)^2 + xy =3D Cte.
Partindo dela, vemos que os pares (b-a, b) e (a-b, a), pois:
[(a-b)-a]^2 + (a-b)a =3D b^2 + a^2 - ab =3D Cte.
Portanto, provamos que sempre =E9 m=FAltiplo de 6.
Mas, se (b-a, b) e (a-b, a) s=E3o solu=E7=F5es, ent=E3o (b, b-a) e (a, =
a-b) tamb=E9m o
s=E3o.
E, seguindo, temos que (a-b, -b), (-b, a-b), (-a, b-a) e (b-a, -a) =
tamb=E9m o
s=E3o.
Portanto, provamos que sempre =E9 m=FAltiplo de 12.
O que estou errando?
Sobre o n=FAmero finito de solu=E7=F5es, vamos analisar esta equa=E7=E3o =
em fun=E7=E3o de
x, ent=E3o, temos:
x =3D [y +- sqrt(y^2 - 4(y^2-Cte)]/2 =3D [y +- sqrt(4Cte - 3y^2)]/2
isto =E9: 4Cte >=3D 3y^2 .... |y| <=3D sqrt(4Cte/3)
ent=E3o, podemos ir chutando todos os y's poss=EDveis e ir calculando os =
x's.
Mas, para cada y, teremos no m=E1ximo 2 x's.. portanto, temos um =
n=FAmero
limitado de solu=E7=F5es.
Ainda podemos afirmar que o n=FAmero de solu=E7=F5es =E9 <=3D =
2*[2sqrt(4Cte/3) + 1] =3D
4sqrt(4Cte/3) + 2
abra=E7os,
Salhab
2008/6/26 Bouskela <bouskela@xxxxxxxxx>:
Demonstre que a equa=E7=E3o:
x^2 - xy + y^2 =3D Cte
Onde "Cte" =E9 uma constante inteira e positiva.
Tem um n=FAmero FINITO de solu=E7=F5es inteiras; e mais: ESTE N=DAMERO =
=C9 M=DALTIPLO DE
"6".
A depender do valor da constante inteira e positiva "Cte", o n=FAmero de
solu=E7=F5es inteiras desta equa=E7=E3o =E9:
=3D 0 , p.ex.: Cte =3D 2, 5, 6, 8, 10, 11, 14, 15, 17, 18, 20, 22, 23, =
24, 26,
29, 30, 32, 33, 34, 35, 38, 40, 41, 42, 44, 45, 46, 47, 50, 51, 53, 54, =
55,
56, 58, 59, 60, 62, 65, 66, 68, 69, 70, 71, 72, 74, 77, 78, 80, 82, 83, =
85,
86, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99 etc.
=3D 1 , Cte =3D 0
=3D 6 , p.ex.: Cte =3D 1, 3, 4, 9, 12, 16, 25, 27, 36, 48, 64, 75, 81, =
100 etc.
=3D 12 , p.ex.: Cte =3D 7, 13, 19, 21, 28, 31, 37, 39, 43, 52, 57, 61, =
63, 67,
73, 76, 79, 84, 93, 97 etc.
=3D 18 , p.ex.: Cte =3D 49 etc.
=3D 24 , p.ex.: Cte =3D 91 etc.
Sds.,
AB
------=_NextPart_000_0010_01C8DA4C.DF3B8A50
Content-Type: text/html;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=3DContent-Type content=3D"text/html; =
charset=3Diso-8859-1">
<META content=3D"MSHTML 6.00.6000.16674" name=3DGENERATOR></HEAD>
<BODY>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana size=3D2><SPAN=20
class=3D625325203-30062008>Ol=E1, novamente,</SPAN></FONT></DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana size=3D2><SPAN=20
class=3D625325203-30062008></SPAN></FONT> </DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana size=3D2><SPAN=20
class=3D625325203-30062008>P.ex., veja que se a=3D0 , ent=E3o a =
solu=E7=E3o =20
(-a, -b) =E9 igual =E0 solu=E7=E3o (a, =
a-b)</SPAN></FONT></DIV>
<DIV><FONT face=3DVerdana size=3D2></FONT> </DIV>
<STYLE>A.psl {
COLOR: #4e81c4; FONT-FAMILY: Verdana,Arial,fixed; TEXT-DECORATION: none
}
A:hover {
TEXT-DECORATION: underline
}
A.psl:hover {
COLOR: #999999
}
.noro {
FONT-SIZE: 8pt; COLOR: #4e81c4; FONT-FAMILY: Verdana,Arial,fixed
}
.logotext {
FONT-SIZE: 10pt; FONT-FAMILY: Verdana,Arial,fixed; TEXT-DECORATION: =
none
}
A.brand {
FONT-WEIGHT: bold; FONT-SIZE: 7pt; COLOR: #0000ff; FONT-FAMILY: =
Verdana,Arial,fixed; TEXT-DECORATION: underline
}
</STYLE>
<DIV align=3Dleft><FONT face=3DVerdana size=3D2><SPAN=20
class=3D625325203-30062008>Sds.,</SPAN></FONT></DIV>
<DIV align=3Dleft><FONT face=3DVerdana size=3D2><SPAN=20
class=3D625325203-30062008>AB!</SPAN></FONT></DIV>
<DIV align=3Dleft> </DIV>
<DIV> </DIV><BR>
<BLOCKQUOTE=20
style=3D"PADDING-LEFT: 5px; MARGIN-LEFT: 5px; BORDER-LEFT: #000000 2px =
solid; MARGIN-RIGHT: 0px">
<DIV class=3DOutlookMessageHeader lang=3Dpt-br dir=3Dltr align=3Dleft>
<HR tabIndex=3D-1>
<FONT face=3DTahoma size=3D2><B>De:</B> owner-obm-l@xxxxxxxxxxxxxx=20
[mailto:owner-obm-l@xxxxxxxxxxxxxx] <B>Em nome de </B>Marcelo Salhab=20
Brogliato<BR><B>Enviada em:</B> domingo, 29 de junho de 2008=20
23:58<BR><B>Para:</B> obm-l@xxxxxxxxxxxxxx<BR><B>Assunto:</B> Re: =
[obm-l] x^2=20
- xy + y^2 =3D Cte<BR></FONT><BR></DIV>
<DIV></DIV>Ol=E1 Bouskela,<BR>sobre o n=FAmero de solu=E7=F5es ser =
menor ou igual a=20
4sqrt(4Cte/3) + 2, acredito que esteja correto.<BR>Mas sobre a =
multiplicidade,=20
vc tem raz=E3o!<BR>Eu cheguei que:<BR>(a, b) ; (-a, -b) ; (b, a) ; =
(-b, -a) ;=20
(a-b, a) ; (b-a, b) ; (a, a-b) ; (b, b-a) ; (b-a, -a) ; (a-b, -b) ; =
(-a, b-a)=20
; (-b, a-b)<BR>totalizando 12 solu=E7=F5es para cada =
encontrada.<BR>isso vale para=20
a !=3D b<BR>para a=3Db, temos que eliminar: (b, a) ; (-b, -a) ; (b-a, =
b) ; (b,=20
b-a) ; (a-b, -b) ; (-b, a-b)<BR>sobrando apenas 6...<BR>Mas, para a =
!=3D b,=20
temos 12... e para a =3D b, temos 6... como 6*2 =3D 12, podemos =
afirmar que ser=E1=20
m=FAltiplo de 6 sempre..<BR>caso eles n=E3o fossem multiplos, ai =
ficaria mais=20
dif=EDcil afirmar alguma coisa.<BR><BR>n=E3o entendi pq meu =
desenvolvimento=20
precisa ser ajustado para x ou y igual a=20
zero.<BR><BR>abra=E7os,<BR>Salhab<BR><BR><BR><BR><BR><BR>
<DIV class=3Dgmail_quote>2008/6/29 Bouskela <<A=20
href=3D"mailto:bouskela@xxxxxxxxx">bouskela@xxxxxxxxx</A>>:<BR>
<BLOCKQUOTE class=3Dgmail_quote=20
style=3D"PADDING-LEFT: 1ex; MARGIN: 0pt 0pt 0pt 0.8ex; BORDER-LEFT: =
rgb(204,204,204) 1px solid">
<DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana =
size=3D2><SPAN>Ol=E1=20
Salhab!</SPAN></FONT></DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana=20
size=3D2><SPAN></SPAN></FONT> </DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana =
size=3D2><SPAN>Voc=EA est=E1 perto da=20
solu=E7=E3o, entretanto, ainda faltam alguns =
ajustes:</SPAN></FONT></DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana=20
size=3D2><SPAN></SPAN></FONT> </DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana =
size=3D2><SPAN>P.ex., se Cte=3D100 ,=20
ent=E3o existem apenas 6 solu=E7=F5es para a eq. em =
estudo:</SPAN></FONT></DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana=20
size=3D2><SPAN></SPAN></FONT> </DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana size=3D2><SPAN>(x, =
y) =3D (-10, -10)=20
; (10, 10) ; (10, 0) ; (-10, 0); (0, -10) e (0, =
10)</SPAN></FONT></DIV>
<DIV dir=3Dltr align=3Dleft><FONT face=3DVerdana=20
size=3D2><SPAN></SPAN></FONT> </DIV>
<DIV dir=3Dltr align=3Dleft><FONT =
size=3D+0><SPAN></SPAN></FONT><SPAN><FONT=20
face=3DVerdana size=3D2>O mesmo acontece para Cte =3D 1, 3, 4, 9, =
12, 16, 25, 27,=20
36, 48, 64, 75, 81, 100 etc.</FONT></SPAN></DIV>
<DIV align=3Dleft><FONT face=3DVerdana size=3D2></FONT> </DIV>
<DIV align=3Dleft><FONT face=3DVerdana size=3D2><SPAN>Repare que =
quando "x" ou "y"=20
s=E3o iguais a "0" seu desenvolvimento precisa ser=20
ajustado...</SPAN></FONT></DIV>
<DIV align=3Dleft><FONT face=3DVerdana size=3D2></FONT> </DIV>
<DIV><SPAN><FONT face=3DVerdana size=3D2>Sds.,</FONT></SPAN></DIV>
<DIV><SPAN><FONT face=3DVerdana size=3D2>AB!</FONT></SPAN></DIV><BR>
<BLOCKQUOTE=20
style=3D"PADDING-LEFT: 5px; MARGIN-LEFT: 5px; BORDER-LEFT: =
rgb(0,0,0) 2px solid; MARGIN-RIGHT: 0px">
<DIV lang=3Dpt-br dir=3Dltr align=3Dleft>
<HR>
<FONT face=3DTahoma size=3D2><B>De:</B> <A=20
href=3D"mailto:owner-obm-l@xxxxxxxxxxxxxx"=20
target=3D_blank>owner-obm-l@xxxxxxxxxxxxxx</A> [mailto:<A=20
href=3D"mailto:owner-obm-l@xxxxxxxxxxxxxx"=20
target=3D_blank>owner-obm-l@xxxxxxxxxxxxxx</A>] <B>Em nome de =
</B>Marcelo=20
Salhab Brogliato<BR><B>Enviada em:</B> domingo, 29 de junho de =
2008 21:16
<DIV class=3DIh2E3d><BR><B>Para:</B> <A =
href=3D"mailto:obm-l@xxxxxxxxxxxxxx"=20
target=3D_blank>obm-l@xxxxxxxxxxxxxx</A><BR></DIV><B>Assunto:</B> =
Re:=20
[obm-l] x^2 - xy + y^2 =3D Cte<BR></FONT><BR></DIV>
<DIV>
<DIV></DIV>
<DIV class=3DWj3C7c>
<DIV></DIV>Ol=E1 Bouskela,<BR>suponha que o par (a, b) seja =
solu=E7=E3o de x^2 -=20
xy + y^2 =3D Cte<BR>ent=E3o, os pares (b, a), (-a, -b), (-b, -a) =
tamb=E9m s=E3o=20
solu=E7=F5es.<BR>Fatorando, temos: (x-y)^2 + xy =3D =
Cte.<BR>Partindo dela, vemos=20
que os pares (b-a, b) e (a-b, a), pois:<BR>[(a-b)-a]^2 + (a-b)a =
=3D b^2 +=20
a^2 - ab =3D Cte.<BR>Portanto, provamos que sempre =E9 m=FAltiplo =
de 6.<BR>Mas,=20
se (b-a, b) e (a-b, a) s=E3o solu=E7=F5es, ent=E3o (b, b-a) e (a, =
a-b) tamb=E9m o=20
s=E3o.<BR>E, seguindo, temos que (a-b, -b), (-b, a-b), (-a, b-a) e =
(b-a, -a)=20
tamb=E9m o s=E3o.<BR>Portanto, provamos que sempre =E9 m=FAltiplo =
de 12.<BR>O que=20
estou errando?<BR><BR>Sobre o n=FAmero finito de solu=E7=F5es, =
vamos analisar=20
esta equa=E7=E3o em fun=E7=E3o de x, ent=E3o, temos:<BR>x =3D [y =
+- sqrt(y^2 -=20
4(y^2-Cte)]/2 =3D [y +- sqrt(4Cte - 3y^2)]/2<BR>isto =E9: 4Cte =
>=3D 3y^2 ....=20
|y| <=3D sqrt(4Cte/3)<BR>ent=E3o, podemos ir chutando todos os =
y's=20
poss=EDveis e ir calculando os x's.<BR>Mas, para cada y, teremos =
no m=E1ximo 2=20
x's.. portanto, temos um n=FAmero limitado de =
solu=E7=F5es.<BR>Ainda podemos=20
afirmar que o n=FAmero de solu=E7=F5es =E9 <=3D =
2*[2sqrt(4Cte/3) + 1] =3D=20
4sqrt(4Cte/3) + 2<BR><BR>abra=E7os,<BR>Salhab<BR><BR><BR><BR>
<DIV class=3Dgmail_quote>2008/6/26 Bouskela <<A=20
href=3D"mailto:bouskela@xxxxxxxxx"=20
target=3D_blank>bouskela@xxxxxxxxx</A>>:<BR>
<BLOCKQUOTE class=3Dgmail_quote=20
style=3D"PADDING-LEFT: 1ex; MARGIN: 0pt 0pt 0pt 0.8ex; =
BORDER-LEFT: rgb(204,204,204) 1px solid">
<DIV>
<DIV>
<P><FONT face=3DVerdana size=3D2>Demonstre que a =
equa=E7=E3o:</FONT></P>
<P><FONT face=3DVerdana size=3D2>x^2 - xy + y^2 =3D =
Cte</FONT></P>
<P><FONT face=3DVerdana size=3D2>Onde "Cte" =E9 uma constante =
inteira e=20
positiva.</FONT></P>
<P><FONT face=3DVerdana size=3D2></FONT></P>
<P><FONT face=3DVerdana size=3D2>Tem um n=FAmero FINITO de =
solu=E7=F5es inteiras;=20
e mais: ESTE N=DAMERO =C9 M=DALTIPLO DE "6".</FONT></P>
<P><FONT face=3DVerdana size=3D2>A depender do valor da =
constante inteira e=20
positiva "Cte", o n=FAmero de solu=E7=F5es inteiras desta =
equa=E7=E3o=20
=E9:</FONT></P>
<P><FONT face=3DVerdana size=3D2>=3D 0 , p.ex.: Cte =3D 2, 5, 6, =
8, 10, 11, 14,=20
15, 17, 18, 20, 22, 23, 24, 26, 29, 30, 32, 33, 34, 35, 38, 40, =
41, 42,=20
44, 45, 46, 47, 50, 51, 53, 54, 55, 56, 58, 59, 60, 62, 65, 66, =
68, 69,=20
70, 71, 72, 74, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89, 90, 92, =
94, 95,=20
96, 98, 99 etc.</FONT></P>
<P><FONT face=3DVerdana size=3D2>=3D 1 , Cte =3D 0</FONT></P>
<P><FONT face=3DVerdana size=3D2>=3D 6 , p.ex.: Cte =3D 1, 3, 4, =
9, 12, 16, 25,=20
27, 36, 48, 64, 75, 81, 100 etc.</FONT></P>
<P><FONT face=3DVerdana size=3D2>=3D 12 , p.ex.: Cte =3D 7, 13, =
19, 21, 28, 31,=20
37, 39, 43, 52, 57, 61, 63, 67, 73, 76, 79, 84, 93, 97 =
etc.</FONT></P>
<P><FONT face=3DVerdana size=3D2>=3D 18 , p.ex.: Cte =3D 49 =
etc.</FONT></P>
<P><FONT face=3DVerdana size=3D2>=3D 24 , p.ex.: Cte =3D 91 =
etc.</FONT></P>
<P><FONT face=3DVerdana size=3D2>Sds.,</FONT></P>
<P><SPAN><FONT face=3DVerdana=20
=
size=3D2>AB</FONT></SPAN></P></DIV></DIV></BLOCKQUOTE></DIV><BR></DIV></D=
IV></BLOCKQUOTE></DIV></BLOCKQUOTE></DIV><BR></BLOCKQUOTE></BODY></HTML>
------=_NextPart_000_0010_01C8DA4C.DF3B8A50--
=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================