[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[SPAM] Re: [obm-l] Soma !!!



SPAM: -------------------- Start SpamAssassin results ----------------------
SPAM: This mail is probably spam.  The original message has been altered
SPAM: so you can recognise or block similar unwanted mail in future.
SPAM: See http://spamassassin.org/tag/ for more details.
SPAM: 
SPAM: Content analysis details:   (9.30 hits, 5 required)
SPAM: REFERENCES         (-0.5 points) Has a valid-looking References header
SPAM: X_MAILING_LIST     (-0.3 points) Found a X-Mailing-List header
SPAM: FROM_ENDS_IN_NUMS  (0.9 points)  From: ends in numbers
SPAM: USER_AGENT_OE      (0.2 points)  X-Mailer header indicates a non-spam MUA (Outlook Express)
SPAM: SPAM_PHRASE_00_01  (0.8 points)  BODY: Spam phrases score is 00 to 01 (low)
SPAM: MAILTO_LINK        (0.2 points)  BODY: Includes a URL link to send an email
SPAM: MAILTO_TO_SPAM_ADDR (0.7 points)  URI: Includes a link to a likely spammer email address
SPAM: DATE_IN_PAST_96_XX (1.5 points)  Date: is 96 hours or more before Received: date
SPAM: RCVD_IN_ORBS       (2.2 points)  RBL: Received via a relay in orbs.dorkslayers.com
SPAM:                    [RBL check: found 49.88.71.189.orbs.dorkslayers.com., type: 68.178.232.99]
SPAM: RCVD_IN_OSIRUSOFT_COM (0.4 points)  RBL: Received via a relay in relays.osirusoft.com
SPAM:                    [RBL check: found 49.88.71.189.relays.osirusoft.com.]
SPAM: X_OSIRU_OPEN_RELAY (2.7 points)  RBL: DNSBL: sender is Confirmed Open Relay
SPAM: PLING_PLING        (1.5 points)  Subject has lots of exclamation marks
SPAM: AWL                (-1.0 points) AWL: Auto-whitelist adjustment
SPAM: 
SPAM: -------------------- End of SpamAssassin results ---------------------

This is a multi-part message in MIME format.

------=_NextPart_000_0118_01C1627C.47536900
Content-Type: text/plain;
	charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Essa quest=E3o deu muito trabalho =E0 tres semana, mais no fim deu =
certo.

  Seja S_n =3D 1.11^0 + 2.11^1 +3.11^2 +...........+n.11111111111 =
rescrever de uma maneira para facilitar a solu=E7=E3o:

     S_n =3D 1.(10^1 - 1)/9 +2.(10^2 - 1)/9 +............+n.(10^n - 1)/9

       S_n =3D 1/9.[ (1.10^1 +2.10^2+.......+n.10^n) - =
(1+2+3+.......+n)]

  Esta parte que eat=E1 em negrito =E9 : S=E9rie aritm=E9tico - =
geom=E9trica. Voc=EA aplica a sguinte f=F3rmula:

          S_n=3D[ a_1(1 - q^n)/1- q]   + rq[1 - nq^(n - 1) +(n - =
1).q^n]/(1 - q)^2
    =20
                obs:a_0=3D0 , a_1=3D1 e q=3D10

  Portanto,

  S_n=3D 1/9 {10/81( 1+9n.10^n - 10^n) - [n(n+1)]/2}

      Testei com n=3D1,2,3 e deu certo=20
        =20
  ----- Original Message -----=20
  From: saulo nilson=20
  To: obm-l@xxxxxxxxxxxxxx=20
  Sent: Tuesday, April 08, 2008 11:26 PM
  Subject: Re: [obm-l] Soma !!!


  (1+n)n/2+(2+n)(n-1)/2+(3+n)(n-3)/2,,,
  soma(k+n)(n-(k-1))/2=3D1/2soma(n^2-k^2)+n+k=3D
  =3D1/2(n^3+n^2+(1+n)n/2-n(n+1)(2n+1)/6=3D
  =3D3n(n+1)(6n+3-(2n+1))=3D12n(n+1)^2


  2008/4/8 Pedro J=FAnior <pedromatematico06@xxxxxxxxx>:

    Engalhei na seguinte soma:

    J=E1 usei aquele exerc=EDcio do livro do Lidisk, mas aquela soma =E9 =
de 1 + 11 + 111 + ... + (111...1), onde (111...1) tem exatamente n =
d=EDgitos, mas mesmo assim ainda n=E3o saiu!


    S_n  =3D  1 + 22 + 333 + 4444 + ... + n ( 111...1)


    onde (111...1) tem exatamente n d=EDgitos.

    Desde J=E1 agrade=E7o!!!



------=_NextPart_000_0118_01C1627C.47536900
Content-Type: text/html;
	charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=3DContent-Type content=3D"text/html; =
charset=3Diso-8859-1">
<META content=3D"MSHTML 6.00.2900.2180" name=3DGENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=3D#ffffff>
<DIV><FONT face=3DArial size=3D2>Essa quest=E3o deu muito trabalho =E0 =
tres semana, mais=20
no fim deu certo.</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>&nbsp; Seja S_n =3D 1.11^0 + 2.11^1 =
+3.11^2=20
+...........+n.11111111111 rescrever de uma maneira para facilitar a=20
solu=E7=E3o:</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>&nbsp;&nbsp;&nbsp;&nbsp; S_n =3D =
1.(10^1 - 1)/9=20
+2.(10^2 - 1)/9 +............+n.(10^n - 1)/9</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; =
S_n =3D 1/9.[=20
<STRONG>(1.10^1 +2.10^2+.......+n.10^n)</STRONG> -=20
(1+2+3+.......+n)]</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>&nbsp; Esta parte que eat=E1 em negrito =
=E9 : S=E9rie=20
aritm=E9tico - geom=E9trica. Voc=EA aplica a sguinte =
f=F3rmula:</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial=20
size=3D2>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; S_n=3D[ =
a_1(1 -=20
q^n)/1- q]&nbsp;&nbsp; + rq[1 - nq^(n - 1) +(n - 1).q^n]/(1 - =
q)^2</FONT></DIV>
<DIV><FONT face=3DArial size=3D2>&nbsp;&nbsp;&nbsp;&nbsp; </FONT></DIV>
<DIV><FONT face=3DArial=20
size=3D2>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;=20
obs:a_0=3D0 , a_1=3D1 e q=3D10</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>&nbsp; Portanto,</FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>&nbsp; <STRONG>S_n=3D 1/9 {10/81( =
1+9n.10^n -=20
10^n)&nbsp;- [n(n+1)]/2}</STRONG></FONT></DIV>
<DIV><FONT face=3DArial size=3D2></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Testei =
com n=3D1,2,3 e=20
deu certo </FONT></DIV>
<DIV><FONT face=3DArial =
size=3D2>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
</FONT></DIV>
<BLOCKQUOTE=20
style=3D"PADDING-RIGHT: 0px; PADDING-LEFT: 5px; MARGIN-LEFT: 5px; =
BORDER-LEFT: #000000 2px solid; MARGIN-RIGHT: 0px">
  <DIV style=3D"FONT: 10pt arial">----- Original Message ----- </DIV>
  <DIV=20
  style=3D"BACKGROUND: #e4e4e4; FONT: 10pt arial; font-color: =
black"><B>From:</B>=20
  <A title=3Dsaulo.nilson@xxxxxxxxx =
href=3D"mailto:saulo.nilson@xxxxxxxxx";>saulo=20
  nilson</A> </DIV>
  <DIV style=3D"FONT: 10pt arial"><B>To:</B> <A =
title=3Dobm-l@xxxxxxxxxxxxxx=20
  href=3D"mailto:obm-l@xxxxxxxxxxxxxx";>obm-l@xxxxxxxxxxxxxx</A> </DIV>
  <DIV style=3D"FONT: 10pt arial"><B>Sent:</B> Tuesday, April 08, 2008 =
11:26=20
  PM</DIV>
  <DIV style=3D"FONT: 10pt arial"><B>Subject:</B> Re: [obm-l] Soma =
!!!</DIV>
  <DIV><BR></DIV>
  <DIV>(1+n)n/2+(2+n)(n-1)/2+(3+n)(n-3)/2,,,</DIV>
  <DIV>soma(k+n)(n-(k-1))/2=3D1/2soma(n^2-k^2)+n+k=3D</DIV>
  <DIV>=3D1/2(n^3+n^2+(1+n)n/2-n(n+1)(2n+1)/6=3D</DIV>
  <DIV>=3D3n(n+1)(6n+3-(2n+1))=3D12n(n+1)^2<BR><BR></DIV>
  <DIV class=3Dgmail_quote>2008/4/8 Pedro J=FAnior &lt;<A=20
  =
href=3D"mailto:pedromatematico06@xxxxxxxxx";>pedromatematico06@xxxxxxxxx</=
A>&gt;:<BR>
  <BLOCKQUOTE class=3Dgmail_quote=20
  style=3D"PADDING-LEFT: 1ex; MARGIN: 0px 0px 0px 0.8ex; BORDER-LEFT: =
#ccc 1px solid">Engalhei=20
    na seguinte soma:<BR><BR>J=E1 usei aquele exerc=EDcio do livro do =
Lidisk, mas=20
    aquela soma =E9 de 1 + 11 + 111 + ... + (111...1), onde (111...1) =
tem=20
    exatamente n d=EDgitos, mas mesmo assim ainda n=E3o =
saiu!<BR><BR><BR>S_n&nbsp;=20
    =3D&nbsp; 1 + 22 + 333 + 4444 + ... + n ( 111...1)<BR><BR><BR>onde =
(111...1)=20
    tem exatamente n d=EDgitos.<BR><BR>Desde J=E1=20
  agrade=E7o!!!<BR></BLOCKQUOTE></DIV><BR></BLOCKQUOTE></BODY></HTML>

------=_NextPart_000_0118_01C1627C.47536900--

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=========================================================================