[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [obm-l] Soma !!!
- To: obm-l@xxxxxxxxxxxxxx
- Subject: Re: [obm-l] Soma !!!
- From: "saulo nilson" <saulo.nilson@xxxxxxxxx>
- Date: Wed, 9 Apr 2008 00:24:50 -0300
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=gamma; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references; bh=QeZ35qjRSvL4VP7TwYt6DyUAK25f48dLrv8aq/yAvB8=; b=l8VQJFI62AjUPz2l5QC8cZWwBMfqSNu8fuOkA2K2GR6iIvAFLwyhp7TQvxLS6EPgtV2Go3ask4h2iN7Sx1HbrR4jUDBLkTiBJTo1bgY6FhTQBw/qYByTLE4VTfUXSys3eavZNtLL5/LmeeP14XVWONHDaaaiJRAOchJF/YR0U0E=
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references; b=UVqunijTSGDNKaTI3/fSrCqBakBsUbRqAENHhwI4rNUMdyjgcm9/N/1QQg3jrN8uumYWlnzFNcNFCXkcxpem4WDg0NoUvoBgSi+qjxhssUyV5s/mO8a4mZ72AQhPlQi3GlfHiu6afwZh7gKVMlAqSsDSNJSWbrc2El9hIisuYbM=
- In-reply-to: <a5a3287d0804081729s1e7bbf7ei46141af8d51e8215@xxxxxxxxxxxxxx>
- References: <a5a3287d0804081729s1e7bbf7ei46141af8d51e8215@xxxxxxxxxxxxxx>
- Reply-to: obm-l@xxxxxxxxxxxxxx
- Sender: owner-obm-l@xxxxxxxxxxxxxx
sn=1+(2+n)(n-1)/2+10(2+n)(n-1)/2+ 100(3+n)(n-2)+1000(4+n)(n-3),,,+10^n(n+n)*(n-(n-1))/2
=1+(2+n)(n-1)/2+1/2soma10^(k-1)(n+k)(n-k+1)=
=(n^2+n)/2+1/20 soma10^k(n^2-k^2)+10^k(n+k)=
=(n^2+n)/2+1/20((n^2+n)soma10^k-1/20soma10^k *k^2+1/20somak10^k )
soma a^k=a^2(a^(n-1) -1)/(a-1)
derivando em relação a a:
soma ka^(k-1)=d(a^(n+1)/(a-1)-a^2/(a-1))/da=
= ((n+1)a^n(a-1)-(a^(n+1)))/(a-1)^2-(2a(a-1)-a^2)/(a-1)^2=
=a^n/(a-1)^2((n(a-1)-1)) -(a^2-2a)/(a-1)^2 *******
fazendo a=10
somak10^k=10(9n-1)(10)^n/81 -800/81
derivando ****** em relação a a outra vez
((a^(n+1)+n(n+1)*a^n)(a-1)-na^(n+1))/(a-1)^2 -((n+1)a^n(a-1)^2-a^(n+1)*2(a-1))/(a-1)^4 -((3a^2-4a)(a-1)^2-a^2(a-2)*2(a-1))/(a-1)^4
(1/10)somak^210^k=10^n/81*(9n^2-n+90)-(10^n/9^3)(9n-11)-(10/9^3)*(74)=
=(10^n/9^3)(81n^2-18n+821) -740/9^3
somak^2*10^k=(10^(n+1)/9^3)*(81n^2-18n+821)-740/9^3
sn=(n^2+n)/2+1/2((n^2+n)(1/9)(10^n-10)-(1/2)(10^(n)/9^3)*(81n^2-18n+821)+37/9^3+
+ 1/2((9n-1)(10)^n/81 -80/81))
2008/4/8 Pedro Júnior <
pedromatematico06@xxxxxxxxx>:
Engalhei na seguinte soma:
Já usei aquele exercício do livro do Lidisk, mas aquela soma é de 1 + 11 + 111 + ... + (111...1), onde (111...1) tem exatamente n dígitos, mas mesmo assim ainda não saiu!
S_n = 1 + 22 + 333 + 4444 + ... + n ( 111...1)
onde (111...1) tem exatamente n dígitos.
Desde Já agradeço!!!